摘要
关于n个正数的k次Hamy平均σ_n(a,k)=1/C_n^k sum from 1≤i1<…<ik≤n(multiply from j=1 to k a_(ij))^(1/k),利用最值压缩定理,证明了与Hamy平均、算术平均和几何平均有关的一个双向不等式(A_n(a^(1/k)))^(kp)·(G_n(a^(1/k)))^(k(1-p))≤σ_n(a,k)≤qA_n(a)+(1-q)G_n(a),其中q=n-k/n-1和p=n-k/kn-k为最佳,从而得到一个较理想的优化不等式.
For Hamy's means σn(a,k)=1/cnk1≤i1∑1〈…〈ik≤n(k∏j-1aij)1/k of n positive real numbers,the paper proved a double inequality involving arithmetic mean, geometric mean and Hamy's mean (An(a1/k))kp·(Gn(a1/k)k(1ρ)≤σn(a,k)≤qAn(a)+(1-q)Gn(a), and q=n-k/n-1和p=n-k/kn-k were the best constants. By the compressed independent variables theorem, the optimal inequalities were established.
作者
何晓红
HE Xiaohong(Office of Academic Affairs,Quzhou Radio & TV University,Quzhou 324000,Chin)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2018年第4期56-60,共5页
Journal of Anhui University(Natural Science Edition)
基金
浙江省自然科学基金资助项目(LY13A01004)
浙江广播电视大学科研基金资助项目(XKT-17Z04
XKT-17G26)
关键词
Hamy平均
优化不等式
最值压缩定理
Hamy's means
optimal inequalities
compressed independent variables theorem