期刊文献+

分辨率优化的混合WENO格式 被引量:1

A Hybrid WENO Scheme for Resolution Optimization
原文传递
导出
摘要 为提高有限差分格式的分辨率,利用傅里叶分析对WENO格式进行色散及耗散优化,并给出优化的线性权重.用优化后的WENO格式与保单调格式(MP)进行加权混合,得到新的加权混合WENO格式(H-WENO).通过一维激波管问题、Shu-Osher问题及二维双Mach反射问题及R-T不稳定性问题对格式进行数值测试.结果显示,新格式具有强健的激波捕捉能力和对小尺度波结构的高分辨率,与原WENO格式相比改进明显. To improve finite difference scheme,Fourier analysis is used to optimize dispersion and dissipation of WENO scheme.And optimal linear weights are given. A class of hybrid schemes is designed by combing optimized WENO schemes with monotonicitypreserving scheme. A weighted hybrid WENO scheme( H-WENO) is obtained. The scheme is tested with one-dimensional shock tube problem,Shu-Osher problem,two-dimensional Mach reflection problem and R-T instability problem. It shows that the scheme has strong ability to capture shock wave and high resolution for small scale wave structure,which is improved obviously compared with original WENO scheme.
作者 郭元 田奇 梁贤 李新亮 GUO Yuan;TIAN Qi;LIANG Xian;LI Xinliang(School of Mathematics and Information Science,Beifang University for Nationalities,Yinchuan 750021,China;School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算物理》 EI CSCD 北大核心 2018年第4期397-404,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11472010,91441103,11372330,11472278) 国家重点研发计划(2016YFA0401200) 民用飞机专项科研(MJ-2015-F-028) 科学挑战专题项目(JCKY2016212A501)资助
关键词 混合格式 数值耗散 色散 保单调 优化 hybrid scheme numerical dissipation numerical dispersion monotonicity-preserving optimize
  • 相关文献

参考文献3

二级参考文献39

  • 1马延文,傅德薰.Fourth order accurate compact scheme with group velocity control (GVC)[J].Science China Mathematics,2001,44(9):1197-1204. 被引量:10
  • 2Harten A, Engquist B, Osher S, Chakravarthy S R. Uniformly high-order accurate essentially nonoscillatory schemes Ⅲ [J] J Comput Phys, 1987, 71:231 -303.
  • 3Cockburn B, Karniadakis G E, Shu C W. l)iscontinuous Galerkin methods [ M ]. Berlin: Springer, 2000.
  • 4Wang Z J. Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation Phys, 2002, 178:210-251.
  • 5Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996, 126:202-228.
  • 6Liu X D, Osher S, Chan T. Weighted essentially non-oscillator' schemes [J]. J Comput Phys, 1994, 115:200 -212.
  • 7Cao W M, Huang W Z, Russell R D. An r-adaptive finite element method based upon moving mesh PDEs [J]. J Comput Phys, 1999, 149:221 -244 T.
  • 8ang H Z, Tang T. Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws [ J]. SIAM J Numer Anal, 2003, 41:487-515.
  • 9Ni G X, Jiang S, Xu K. Remapping-free ALE-type kinetic method for flow computations [J]. J Comput Phys, 2009, 228: 3154 -3171.
  • 10Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids [ J]. J Comput Phys, 1998, 144:194-212.

共引文献16

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部