期刊文献+

一类四维忆阻混沌电路的动力学行为分析 被引量:8

Dynamical Behavior Analysis of a Class of 4D Memristive Chaotic System
原文传递
导出
摘要 讨论一类4D忆阻混沌电路的动力学行为,并研究多稳定性的吸引域.为保证计算结果的高效性和准确性,利用CPU+GPU的大规模计算能力和具有128位小数的多精度GMP库及MPFR库,计算出对应吸引子的吸引域,并用区间牛顿法验证当吸引域很小时吸引子的存在性;最后运用拓扑马蹄理论和构造忆阻模拟电路两种方式验证系统超混沌的存在性. Dynamical behavior of a class of 4 D memristive chaotic circuits was discussed,and attracting domain of multi-stability was studied. In order to guarantee efficiency and accuracy of calculation results,CPU + GPU large-scale computing power were introduced and more than 128 decimal places of precision GMP library and MPFR library were applied to calculate domain of corresponding attractor. Finally,existence of hyperchaos was proved by using method of topological horseshoe theory and constructing memristive analog circuit.
作者 刘娣 杨芳艳 周国鹏 李清都 廖晓昕 LIU Di;YANG Fangyan;ZHOU Guopeng;LI Qingdu;LIAO Xiaoxin(School of Cybersecurity,Southeast University,Nanjing 210096,China;School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Research Institute of Engineering Technology,Hubei University of Science and Technology,Xianning Hubei 437100,China;g.School of Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
出处 《计算物理》 EI CSCD 北大核心 2018年第4期458-468,共11页 Chinese Journal of Computational Physics
基金 国家自然科学基金(61501073,71473073) NSFC-浙江两化融合联合基金(U1509217) 湖北省科技支撑计划项目(2015BAA001) 湖北省中小企业创新基金(2015DAL069)资助项目
关键词 4D忆阻混沌电路 多稳定性 吸引域 拓扑马蹄 超混沌 4D memristive chaotic system multi-stability attracting domain topological horse shoe hyperchaos
  • 相关文献

参考文献10

二级参考文献127

  • 1孙琳,姜德平.驱动函数切换调制实现超混沌数字保密通信[J].物理学报,2006,55(7):3283-3288. 被引量:21
  • 2于洪洁,彭建华.非线性耦合超混沌Rssler系统和网络的同步[J].计算物理,2006,23(5):626-630. 被引量:11
  • 3Chua L O 1971 IEEE Trans. Circ. Theory CT-18 507.
  • 4Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80.
  • 5Wang F Z, Helian N, Wu S, Lira M G, Guo Y and Parker M A 2010 IEEE Electron. Dev. Lett. 31 755.
  • 6Pershin Y V and Di Ventra M 2010 Neural Networks 23 881.
  • 7Pershin Y V and Di Ventra M 2010 IEEE Tr'ans. Circuits Sys. 1: Regular Papers 57 1857.
  • 8Pershin Y V and Di Ventra M 2011 Adv. Phys. 60 145.
  • 9Witrisal K 2009 Electron. Lett. 45 713.
  • 10Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183.

共引文献74

同被引文献61

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部