摘要
讨论一类4D忆阻混沌电路的动力学行为,并研究多稳定性的吸引域.为保证计算结果的高效性和准确性,利用CPU+GPU的大规模计算能力和具有128位小数的多精度GMP库及MPFR库,计算出对应吸引子的吸引域,并用区间牛顿法验证当吸引域很小时吸引子的存在性;最后运用拓扑马蹄理论和构造忆阻模拟电路两种方式验证系统超混沌的存在性.
Dynamical behavior of a class of 4 D memristive chaotic circuits was discussed,and attracting domain of multi-stability was studied. In order to guarantee efficiency and accuracy of calculation results,CPU + GPU large-scale computing power were introduced and more than 128 decimal places of precision GMP library and MPFR library were applied to calculate domain of corresponding attractor. Finally,existence of hyperchaos was proved by using method of topological horseshoe theory and constructing memristive analog circuit.
作者
刘娣
杨芳艳
周国鹏
李清都
廖晓昕
LIU Di;YANG Fangyan;ZHOU Guopeng;LI Qingdu;LIAO Xiaoxin(School of Cybersecurity,Southeast University,Nanjing 210096,China;School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Research Institute of Engineering Technology,Hubei University of Science and Technology,Xianning Hubei 437100,China;g.School of Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
出处
《计算物理》
EI
CSCD
北大核心
2018年第4期458-468,共11页
Chinese Journal of Computational Physics
基金
国家自然科学基金(61501073,71473073)
NSFC-浙江两化融合联合基金(U1509217)
湖北省科技支撑计划项目(2015BAA001)
湖北省中小企业创新基金(2015DAL069)资助项目
关键词
4D忆阻混沌电路
多稳定性
吸引域
拓扑马蹄
超混沌
4D memristive chaotic system
multi-stability
attracting domain
topological horse shoe
hyperchaos