期刊文献+

基于高阶统计量的自适应盲源分离算法

Blind Sources Separation Using Higher Order Statistic
下载PDF
导出
摘要 提出了一种新的自适应盲源分离算法。在无噪音实时两源两传感器的情况下 ,一旦观测信号被白化 ,只需要辨识一个特定的旋转矩阵就可以完成盲源分离 ,并给出了能表征该旋转矩阵的角的自适应估计器。仿真结果表明 ,当满足源峭度和不为零的条件时 。 A new learning algorithm is developed for blind separation of independent source signals from their linear mixtures. In the noiseless real mixture two source two sensor scenario, once the observations are whitened (decorrelated and normalized), only a given rotation matrix remains to be identified in order to achieve the source separation. In this paper, an adapter estimator of the angle that characterizes such a rotation is derived. It shows that estimator converges to a stable valid separation solution with the only condition that the sum of source kurtosis be distinct from zero. Simulation demonstrate the validity of the algorithm.
出处 《西安理工大学学报》 CAS 2002年第2期113-116,共4页 Journal of Xi'an University of Technology
关键词 自适应 盲源分离 概率密度函数 高阶统计量 信号处理 blind source separation probability density function higher order statistic
  • 相关文献

参考文献9

  • 1[1]Jutten C,Herault J.Part I:An adaptive algorithm based on neuromimetic architecture[J].Signal Process,1991,24(1):1~10.
  • 2[2]Sorouchyari E.Blind separation of sources,part III:Stability analysis[J].Signal Process,1991,24(1):21~29.
  • 3[3]Comon P.Separation of stochastic processes [A].Proc Workshop Higher Order Spectral Anal[C].Vail,Colorado:[s.n.],1989.174~179.
  • 4[4]Gaeta M,Lacoume J L,Lagunas M A.Sources separation without a prior knowledge[A].The Maximum Likelihood Solution,Proc EUSIPCO[C].Barcelona,Spain:[s.n.],1990.621~624.
  • 5[5]Comon P.Independent component analysis,a new concept?[J].Signal Process,1994,36(3):287~314.
  • 6[6]Harroy F,Lacoumeme J L,Lagunas M A,et al.A general adaptive algorithm for nongaussian source separation without any constraint [A].Proc EUSIPCO[C].Edinburgh,United Kingdom:[s.n.],1994.1161~1164.
  • 7[7]Cardoso J F,Laheld B H.Equivariant adaptive source separation [J].IEEE Trans Signal Processing,1996,44:3017~3030.
  • 8[8]Zarzoso V,Nandi A K.Generalizationn of a maximum-likelihood approach to blind source separation [A].Proc EUSIPCO[C].Rhodes,Greece:[s.n.],1998.2069~2072.
  • 9[9]Zarzoso V,Nandi A K.Blind separation of independent sources for virtually any source probability density function[J].IEEE Trans Signal Processing,1999,47(9):2419~2432.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部