期刊文献+

响应面法和BFGS算法在试井分析中的应用

Application of response surface method and BFGS algorithm in well test analysis
下载PDF
导出
摘要 试井分析是利用关井所测的井底压力随时间变化的资料来分析地层和井筒参数,是一个典型的反问题.基于响应面法提出了一种新的参数自动反求的数值试井解释方法.选定不确定参数及其范围,确定试算算例,然后利用拟合方法得到多项式逼近函数,即构造响应面模型.利用响应面模型构建计算值与实际观测值偏差的目标函数,再利用BFGS算法以及拉丁超立方抽样搜索目标函数的最小值,得到不确定参数值.算例表明该方法能有效地对井底压力以及压力导数进行拟合,因而具有很好的应用前景. Well test analysis is a typical inverse problem that analyzes the formation and wellbore parameters using the time-varying data of the bottom hole pressure measured during shut-in. Based on the response surface method, a new method for automatically evaluating parameters was presented to solve the numerical well test interpretation. Select the uncertain parameters and their scope, the experimental examples were determined, and then the polynomial approximation function was obtained by matching method, that is, constructing the response surface model. Using the response surface model, the objective function of the deviation between the calculated value and the actual observation value was constructed. The minimum value of the objective function was obtained by using the BFGS algorithm and the Latin hypercube sampling to obtain the uncertain parameter value. The numerical examples show that the method can effectively match the bottom hole pressure and the pressure derivative, and thus has a good potential for application.
作者 李道伦 陈刚 查文舒 许恩华 LI Daolun;CHEN Gang;ZHA Wenshu;XU Enhua(School of Mathematics,Hefei University of Technology,Hefei 236009,Chin)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第5期400-408,共9页 JUSTC
基金 中国石油-中国科学院战略合作项目(2015A-4812) 中国科学院战略性先导科技专项(XDB10030402)资助
关键词 试井分析 响应面法 目标函数 BFGS算法 拉丁超立方抽样 well test analysis response surface method objective function BFGS algorithm Latin hypercube sampling
  • 相关文献

参考文献3

二级参考文献31

  • 1裘亦楠.石油开发地质方法论(三)[J].石油勘探与开发,1996,23(4):42-45. 被引量:16
  • 2尤启东,陈月明.基于统计学习理论的高含盐油藏储层渗透率变化预测[J].油气地质与采收率,2006,13(2):75-77. 被引量:5
  • 3Faisal Al-Thawad, Dominic Agyapong, Raj Baneijee, M BIssaka, Saudi Aramco. Pressure Transient Analysis of Hori-zontal Wells in a Fractured Reservoir; Gridding BetweenArt and Science,87013 - MS,2004.
  • 4OLIVER D S, REYNOLDS A C, LIU N. Inverse theory for petroleum reservoir characterization and history matc- hing [ M 1. New York : Cambridge University Press, 2008.
  • 5OLIVER D S. On conditional simulation to inaccurate da- ta [ J ]. Math Geology, 1996,28 (6) : 811-817.
  • 6CHEN W H, GAVALAS G R, SEINFELD J H, et al. A new algorithm for automatic history matching [J ]. SPE Journal, 1974,14 ( 6 ) :593-608.
  • 7SARMA P, AZIZ K, DURLOFSKY L J. Implementation of adjoint solution for optimal control of smart wells[ R]. SPE 92864, 2005.
  • 8ANTERION F, EYMARD R, KARCHER B. Use of pa- rameter gradients for reservoir history matching[ R]. SPE 18433, 1989.
  • 9WU Zhan, REYNOLDS A C, OLIVER D S. Conditioning geostatistieal models to two-phase production data [ J ]. SPE Journal, 1999,4(2) :142-155.
  • 10LI R, REYNOLDS A C, OLIVER D S. History matching of three-phase flow production data [ R ]. SPE 87336, 2003.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部