摘要
为了研究一类四次Kolmogorov系统在正平衡点(1,1)处的中心和极限环分支问题,运用计算机代数软件Mathematica计算系统的前6阶奇点量,导出(1,1)成为系统中心的必要条件,并用分析方法和Gr9bner基方法证明了条件是充分的。证得系统在该平衡点处可分支出6个极限环。
The center and bifurcation of limit cycles at equilibrium point(1,1)for a class of quartic Kolmogorov are studied.By using computational algebra system Mathematica,the first six singular point values are computed and the necessary conditions of(1,1)to be a center are deduced.By the analytical method and Grobner basis method,the sufficiency of the conditions are proved.Finally,it is proved that the system can bifurcate 6 limit cycles in the equilibrium point.
作者
占家佳
黄文韬
何东平
ZHAN Jiajia;HUANG Wentao;HE Dongping(School of Mathematics and Computational Science,Guilin University of Electronic "Fechnology,Guilin 541004,China;THe Ministry of Science,Guilin University of Aerospace Technology,Guilin 541004,China)
出处
《桂林电子科技大学学报》
2018年第3期242-246,共5页
Journal of Guilin University of Electronic Technology
基金
国家自然科学基金(11361017)
广西自然科学基金(2016GXNSFDA380031)