期刊文献+

基于改进OMP算法的无线传感器网络节点定位

Unknown node location in wireless sensor networks based on improved OMP algorithm
下载PDF
导出
摘要 定位问题是无线传感器网络中极具前景的钻研课题。解决定位问题的根本是提高目标的定位精度和加快目标的定位速度。为了解决无线传感器网络定位方法可以优化定位的精度。以压缩感知为研究方法。首先对被检测区域划分网格,传感器节点和未知节点散布在网格中,然后计算出区域中锚节点与网格的距离得到压缩感知模型的测量矩阵,并采用改进的OMP重构算法,通过测量矩阵对未知节点进行初步定位,接下来运用质心算法对目标进行估计定位,最后运用Matlab做仿真实验。实验结果表明,算法降低了无线传感器网络的系统通信量,提高了目标定位的工作效率,在定位精度上符合实际运用的要求。 The positioning problem is a very promising research topic in wireless sensor networks. To solve the positioning problem is to improve the positioning accuracy of the target and speed up the target's positioning speed. In order to solve the wireless sensor network positioning method, the positioning accuracy can be optimized. Compressive sensing is the research method. Firstly, the detected area is divided into grids, and the sensor nodes and unknown nodes are scattered in the grid.Then the distance between the anchor nodes and the grid in the area is calculated to obtain the measurement matrix of the compressed sensing model, and the improvement is adopted. The OMP reconstruction algorithm uses the measurement matrix to initially locate the unknown node, then uses the centroid algorithm to estimate and locate the target, and finally uses Matlab as the simulation experiment. The experimental results show that the algorithm reduces the system traffic of the wireless sensor network, improves the work efficiency of the target positioning, and meets the requirements of practical application in positioning accuracy.
作者 钟宜梅 Zhong Yimei(School of Computer Science and Projectj Anhui University of Science and Technology,Huainan 232001,China)
机构地区 安徽理工大学
出处 《信息通信》 2018年第7期5-8,共4页 Information & Communications
关键词 目标定位 无线传感器网络 压缩感知 重构算法 target location wireless sensor network compressed sensing restructing algorithm
  • 相关文献

参考文献3

二级参考文献44

  • 1王鼎,张莉,吴瑛.基于角度信息的结构总体最小二乘无源定位算法[J].中国科学(F辑:信息科学),2009,39(6):663-672. 被引量:19
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3陈玲,李少洪,黎莉.三维空间被动传感器的快速数据关联算法研究[J].电子学报,2005,33(9):1549-1552. 被引量:12
  • 4Xu Y X, Gao X, Sun Z Y. WSN Node Localization Algorithm Design Based on RSSI Technology [ C ] // International Conference on Intelligent Computation Technology and Automation ( ICICTA ), 2012. Zhangjiajie: I-Unknown] 556 - 559.
  • 5Zhu S H, Ding Z G. Joint Synchronization and Localization Using TOAs: A Linearization Based WLS Solution [J ]. IEEE Journal on Selected Areas in Communications, 2010,28(7) : 1017 - 1025.
  • 6Shi H Y, Gao J Z. A New Hybrid Algorithm on TDOA Localization in Wireless Sensor Network [C] /// IEEE International Conference on Information and Automation (ICIA), 2011. Shenzhen:[Unknown], 606 - 610.
  • 7Chan F K, Wen C Y. Adaptive AOA/TOA Localization Using Fuzzy Particle Filter for Mobile WSNs[C]//IEEE Vehicular Technology Conference, 2011. Budapest: [Unknown], 1 - 5.
  • 8Bulusu N, Heidemann J, Estrin D. GPS-less Low Cost Outdoor Localization for Very Small Devices[J]. IEEE Personal Communications Magazine, 2000,7(5)..28 - 34.
  • 9Wang J, Urriza P, Han Y X. Weighted Centroid Localization Algorithm: Theoretical Analysis and Distributed Implementation [J ]. IEEE Transactions on Wireless Communications, 2011,10(10)~3403 - 3413.
  • 10He T, Huang C, Blum B M. Range-free LocalizationSchemes for Large Scale Sensor Networks [C] // Proceedings in MobiCom'03, San Diego, CA, USA. New York: ACM, 81- 95.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部