期刊文献+

基于改进聚类和DTW的非侵入式负荷识别

Non-intrusive Load Identification Based on Improved Clustering and DTW Matching Algorithm
下载PDF
导出
摘要 利用事件检测提取的功率特征数据进行K-medoids聚类分析,聚类结果将同DTW匹配距离结合识别电器设备,最终能够有效地识别出事件设备。通过改进K-medoids方法的初始点选择方法以及距离判别方法有效地改善了聚类结果;改进了聚类DB评判方法,既能有效评判聚类效果,也能简化计算。良好的聚类结果将为进一步匹配分类做铺垫,最后详细分析了DTW模板匹配与聚类结合识别负荷的过程,并且对多种匹配模式的DTW方法进行了实验,经过实验选择了合适的匹配模式,并且实验验证其能够有效减小匹配距离。 The K-medoids cluster analysis is performed using the power signature data extracted from the event detection. The clustering results will be combined with the DTW matching distance to identify the electrical equipment,and eventually the event equipment can be effectively identified. By improving the initial point selection method of the K-medoids method and improving the distance discriminating method, the clustering result is effectively improved;and the cluster DB evaluation method is improved,which not only can effectively evaluate the clustering effect, but also can simplify the calculation. Good clustering results will pave the way for further matching and classification. Finally, the process of load identification combined with DTW template matching and clustering is analyzed in detail.Experiments are conducted on the multiple methods of matching modes of DTW, and suitable matching mode is selected through experiments.Models, and experiments verify that it can effectively reduce the matching distance.
作者 王丹 黄小莉 Wang Dan;Huang Xiao Li(College of Electrical and Electronic Information,XiHua university,Chengdu Sichua)
出处 《信息通信》 2018年第7期27-31,共5页 Information & Communications
基金 西华大学研究生创新基金(项目编号:ycjj2017061) 教育部"春晖计划"(项目编号:Z2011089)
关键词 改进DB评判 K-medoids聚类分析 匹配模式 DTW模板匹配 非侵入式负荷识别 改进距离判别方法 Improved DB evaluation K-medoids cluster analysis matching patterns DTW template matching non- intr23usive load identification
  • 相关文献

参考文献3

二级参考文献29

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2Han J W,Kamber M. Data Mining: Concepts and Techniques[M]. Beijing: China Machine Press, 2000:383-466.
  • 3Theodoridis S, Koutroumbas K. Pattern tecognition[M]. Boston: Academic Press, 2009 : 745-748.
  • 4Kaufman L, Rousseeuw P J. Finding groups in data: An introduction to cluster analysis[M]. New York: Wiley, 1990 : 126-163.
  • 5Lucasius C B, Dane A clustering of large data algorithm: Background, Analytica Chimica Acta, D, Kateman G. On k-medoid sets with the aid of a genetic feasibility and comparison[J]. 1993, 282(3): 647-669.
  • 6Ng R, Han J. Efficient and effective clustering methods for spatial data mining[C] // In Proceedings of the 20th International Conference on very Large Databases, Santiago, 1994: 144-155.
  • 7Wei C P, Lee Y H, Hsu C M. Empirical comparison of fast partitioning-based clustering algorithms for large data sets[J]. Expert Systems with Applications, 2003, 24(4) 351-363.
  • 8Zhang Q, Couloigner I. A new and efficient K-medoid algorithm for spatial clustering[J]. Lecture Notes in Computer Science, 2005, 3482:181-189.
  • 9Park H S, Jun C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36 (2): 3336-3341.
  • 10Frank A, Asuncion A. UCI machine learning repository[EB/OL]. Irvine, CA: University of California, School of Information and Computer Science, 2010. http:// archive, ics. uci. edu/ml.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部