期刊文献+

基于94 GHz非对称天线生物雷达系统的语音探测性能实验研究 被引量:2

Experimental study on speech detection performance based on 94 GHz asymmetric antenna biological radar system
下载PDF
导出
摘要 目的 :研究94 GHz非对称天线生物雷达系统的人体语音探测性能,进一步提高生物雷达语音探测能力。方法:以94 GHz非对称天线生物雷达系统为核心,设计该雷达系统与94 GHz对称天线生物雷达系统、麦克风系统的语音探测性能对比实验,并利用语谱图等评估方法对系统的语音探测性能进行分析。结果:对称天线雷达采集的人体语音信号频率范围为0~1 000 Hz,将直径为600 mm卡塞格伦天线作为接收模块的94 GHz非对称天线雷达采集的人体语音信号频率范围为0~1 200 Hz。结论:将直径为600 mm卡塞格伦天线作为接收模块的非对称天线生物雷达获取语音信号的能力更强,探测距离更远。 Objective To study the human speech detection performance of 94 GHz asymmetric antenna biological radar system and further improve the speech detection capability of biological radar. Methods With a 94 GHz asymmetric antenna biological radar as the core, a comparison experiment between the radar system, the 94 GHz symmetric antenna biological radar system and the microphone system was designed, and the performance of the system was evaluated by means of spectrogram methods. Results The frequency range of speech signals detected by the 94 GHz symmetric antenna radar was about 0 to 1 000 Hz, and the frequency range of human speech signals detected by the 94 GHz asymmetric antenna radar with a diameter of 600 mm as the receiving module was about 0 to 1 200 Hz. Conclusion The asymmetric antenna biological radar with a diameter of 600 millimeter antenna as the receiving module has a strong ability to obtain speech signals and has a long detection distance.
作者 陈扶明 孙继尧 王健琪 CHEN Fu-ming;SUN Ji-yao;WANG Jian-qi(Department of Medical Engineering,Lanzhou General Hospital of the PLA,Lanzhou 730050,China;School of Biomedical Engineering,the Fourth Military Medical University,Xi’an 710032,China)
出处 《医疗卫生装备》 CAS 2018年第8期11-15,共5页 Chinese Medical Equipment Journal
关键词 生物雷达 语音探测 非对称天线 毫米波 biological radar speech detection asymmetric antenna millimeter wave
  • 相关文献

参考文献3

二级参考文献16

  • 1王健琪,郑崇勋,荆西京,路国华,王海滨,倪安胜.基于毫米波的非接触生命参数检测系统的研制(英文)[J].航天医学与医学工程,2004,17(3):157-161. 被引量:15
  • 2刘诚睿,王健琪,荆西京,李杰,吕昊,路国华,张扬.非接触式语音探测系统[J].医疗卫生装备,2006,27(6):28-29. 被引量:2
  • 3张波,曹志刚.低信噪比条件下的一种自适应有声/无声判决算法[J].信号处理,1996,12(3):239-246. 被引量:16
  • 4Deng L,Liu Z,Zhang Z Y,et al.Nonlinear information fusion in multi-sensor processing-extracting and exploiting hidden dynamics of speech captured by a bone-conductive microphone[C]//IEEE 6th Workshop on Multimedia Signal Proce-ssing.Siena,Italy:IEEE,2004:19-22.
  • 5Patil S A,Hansen J H L.The physiological microphone(PMIC):a competitive alternative for speaker assessment in stress detection and speaker verification[J].Speech Communication,2010,52(4):327-340.
  • 6BrownⅢD,Ludwig R,Pelteku A,et al.A novel non-acoustic voiced speech sensor[J].Meas Sci Technol,2004,15(7):1 291-1 302.
  • 7Avargel Y,Cohen I.Speech measurements using a laser Doppler vi-brometer sensor:application to speech enhancement[C]//Proceedings of 2011 Joint Workshop on Handsfree Speech Communication and Microphone Arrays(HSC-MA).Edinburgh:IEEE,2011:109-114.
  • 8Holzrichter J F,Burnett G C,Ng L C,et al.Speech articulator measurements using low power EM-wave sensors[J].Journal of the Acoustical Society of America,1998,103(1):622-625.
  • 9Eid A M,Wallace J W.Ultrawideband speech sensing[J].IEEE Antennas Wireless Propag Lett,2009,8:1 414-1 417.
  • 10Lin C S,Chang S F,Chang C C,et al.Microwave human vocal vibration signal detection based on Doppler radar technology[J].IEEE Microw Theory Tech,2010,58(8):2 299-2 306.

共引文献3

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部