期刊文献+

压电悬臂梁俘能器输出特性仿真分析 被引量:1

Simulation Analysis of Output Characteristics of Piezoelectric Cantilever Beams Harvester
下载PDF
导出
摘要 为了研究压电俘能器的振动频率、内阻抗、负载及输出功率之间的耦合关系,基于ANSYS APDL软件,对单、双晶串联、双晶并联等多种不同配置方式的压电悬臂梁俘能器进行了压电-电路耦合分析。研究表明,俘能器内阻抗随振动频率呈现非线性变化,在短路谐振频率处达到最小值,在开路谐振处达到最大值;俘能器内、外阻抗匹配时,俘能器输出功率达到最优值;俘能器阻尼较小时,最优输出功率出现在短路谐振与开路谐振处,随着阻尼比逐渐增加,最优输出功率出现在两者之间,且只有一个峰值。 In order to study the coupling relationship among the vibration frequency, the internal impedance, the load and the output power of the piezoelectric energy harvester, the piezoelectric circuit coupling analysis of the piezoelectric energy harvesters with different configurations of single crystal series, double crystal series, double crystal parallel is carried out based on ANSYS APDL software. The results show that the impedance of the energy harvester exhibits a non linear change with the vibration frequency, which reaches the minimum value at short circuit resonant frequency and reaches the maximum value at open circuit resonance. The output power of the energy harvester reaches the optimal value when the internal and external impedances match. When the damping ratio of the energy harvester is relatively small, the optimal output power appears at short circuit resonant and open circuit resonance. As the damping ratio gradually increases, the optimal output power occurs between short circuit resonant and open circuit resonance, and there is only one peak.
作者 孙凯利 王海峰 李蒙 崔宜梁 SUN Kaili;WANG Haifeng;LI Meng;CUI Yiliang(College of Mechanical & Electrical Engineering,Qingdao University,Qingdao 2GG071,China)
出处 《压电与声光》 CAS CSCD 北大核心 2018年第4期552-555,共4页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(51405255) 山东省高等学校科技计划资助项目(J12LN95) 山东省科技发展计划--政策引导类资助项目(2012YD04038)
关键词 压电俘能 谐响应分析 阻抗匹配 压电悬臂梁 输出功率 piezoelectric energy harvesting harmonic response analysis impedance matching piezoelectric cantilever beam output power
  • 相关文献

参考文献3

二级参考文献19

  • 1娄利飞,杨银堂,樊永祥,李跃进.压电薄膜微传感器振动模态的仿真分析[J].振动与冲击,2006,25(4):165-169. 被引量:16
  • 2曲方远.功能陶瓷的物理特性[M].北京:化学工业出版社,2007:183-185.
  • 3GLYNNE J P, TUDORM J, BEEBY S P, et al. An electromagnetic vibration-powered generator for intelli- gent sensor systems[J]. Sensors and Actuators A, 2004,110 (1/3) : 344-349.
  • 4MICHESON P D, MIAO P, STARK B H, et al. MEMS electrostatic micropower generator for low fre- quency operation[J]. Sensors and Actuators A, 2004, 115(2/3) : 523-529.
  • 5AJITSARIA J, CHOE S Y, SHEN D, et al. Model- ing and analysis of a bimorph piezoelectric cantilever beam for voltage generation[J]. Smart Mater Struet, 2007,16(2) :447-454.
  • 6SODANO H A, INMAN D J, PARK G. Generation and storage of electricity from power harvesting de- vices[J]. Intell Mater Syst Struct, 2005,16 (1) : 67- 75.
  • 7SONG H J,CHOI Y T,WERELEY N M, et al. Ener- gy harvesting devices using macro-fiber composite ma- terials[J]. Journal of Intelligent Material Systems and Structures, 2010,21 (6) : 647-658.
  • 8AULD B A. Acoustic fields and waves in solids[M]. New York: Wiley, 1973 : 357-382.
  • 9程光明,庞建志,唐可洪,杨志刚,曾平,阚君武.压电陶瓷发电能力测试系统的研制[J].吉林大学学报(工学版),2007,37(2):367-371. 被引量:42
  • 10PRIYA S. Advances in energy harvesting using low profile piezoelectric transducers [J]. J Electroeeram, 2007, 19:165-182.

共引文献11

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部