期刊文献+

基于CART决策树的柴油机故障诊断方法研究 被引量:11

Fault diagnosis of diesel engines based on a classification and regression tree (CART) decision tree
下载PDF
导出
摘要 采用一种自适应局部有效值(RMS)计算方法提取柴油机缸盖振动信号时域特征,结合分类回归树(CART)算法建立故障分类模型并进行柴油机的状态识别。通过实验获取柴油机失火和撞缸两种故障工况及正常工况下的振动数据,计算出原始信号的局部RMS后,根据自适应阈值确定点火冲击区域和非点火上止点冲击区域提取局部特征,最后将特征输入CART算法中构建分类模型来验证所提取特征的有效性。结果表明:柴油机在3种状态下的识别率均达到100%,基于CART算法和局部特征提取的方法能够有效诊断柴油机故障。 An adaptive local root mean square( RMS) calculation method has been used to extract the time-domain characteristics of a diesel engine cylinder head vibration signal. The classification model of the diesel engine was established based on the classification and regression tree( CART) algorithm. The vibration data for diesel engine misfiring,crashing cylinders and the normal operating conditions were obtained through experiments. After calculating the local RMS of the original signal,the local characteristics were extracted based on the self-adaptive thresholds to determine the ignition impact area and non-ignition top dead center impact area. Finally,these features were input into the CART algorithm to build a classification model in order to verify the validity of the extracted features.The results show that the recognition rate of the diesel engine reaches 100% in all three states. Thus the CART algorithm and local feature extraction method can effectively diagnose diesel engine faults.
作者 江志农 魏东海 王磊 赵志超 茆志伟 张进杰 JIANG ZhiNong;WEI DongHai;WANG Lei;ZHAO ZhiChao;MAO ZhiWei;ZHANG JinJie(Diagnosis and Self-Recovery Engineering Research Center,College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029;Sinopec Chongqing Natural Gas Pipeline Co.Ltd.,Chongqing 404100,China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期71-75,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家"863"计划(2014AA041806) 国家重点研发计划(2016YFF0203305) 中央高校基本科研业务费(JD1815)
关键词 分类回归树(CART)算法 柴油机故障诊断 局部有效值(RMS)计算 自适应阈值 特征提取 classification and regression tree (CART)algorithm diesel engine fault diagnosis local root meansquare (RMS) calculation adaptive threshold feature extraction
  • 相关文献

参考文献6

二级参考文献42

共引文献69

同被引文献115

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部