期刊文献+

基于三维卷积神经网络的无参考视频质量评价 被引量:2

No-Reference Video Quality Assessment Based on Three-Dimensional Convolutional Neural Networks
原文传递
导出
摘要 为了在不借助参考视频的条件下准确评价失真视频质量,提出一种应用三维卷积神经网络提取失真视频时空域特征的通用型无参考视频质量评价算法。在视频质量库上训练卷积神经网络模型3D ConvNets,使3D ConvNets学习到与视频失真程度相关的特征;应用3DConvNets对输入的失真视频进行特征提取,对提取得到的质量特征先后进行L2范数规则化和主成分分析以防止过拟合并去除冗余特征;使用线性支持向量回归根据视频质量特征预测失真视频的质量分数。实验结果表明,本文算法能够较为准确地评价多种视频失真类型,并且在更换测试视频库后依然保持较高的评价准确度,同时算法评价视频质量的计算复杂度极低。 In order to assess the quality of distorted videos accurately without reference videos,a universal noreference video quality assessment algorithm is proposed,which applies three-dimensional(3D)convolutional neural networks to extracting spatiotemporal features of distorted videos.Firstly,the convolutional neural network model 3D ConvNets is trained on the video quality database,and then the features related to video distortion degree are learned.Then,3D ConvNets is used to extract features of the input distorted video,after which L2-normalization and principal component analysis are performed to prevent overfitting and eliminate redundancy.Finally,linear support vector regression is used to predict quality score of the distorted video based on video quality features.The experimental results show that the proposed algorithm can assess video quality accurately across different kinds of distortion,and it still maintains a high level of accuracy when the test video database is changed.Last but not least,the computational complexity of quality assessment process is extremely low for the proposed algorithm.
作者 张淑芳 郭志鹏 Zhang Shufang;Guo Zhipeng(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,Chin)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第7期249-254,共6页 Laser & Optoelectronics Progress
关键词 成像系统 视频质量评价 无参考 三维卷积神经网络 时空域特征 线性支持向量回归 imaging systems video quality assessment no-reference three-dimensional convolutional neural networks spatiotemporal features linear support vector regression
  • 相关文献

参考文献3

二级参考文献46

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:182
  • 2赵树森,陈思嘉,沈京玲.用支持向量机识别毒品的太赫兹吸收光谱[J].中国激光,2009,36(3):752-757. 被引量:19
  • 3姜海明,谢康,王亚非.基于粒子群算法的拉曼光纤放大器的多抽运源优化[J].光电子.激光,2004,15(10):1190-1193. 被引量:9
  • 4石俊生,金伟其,王岭雪.视觉评价夜视彩色融合图像质量的实验研究[J].红外与毫米波学报,2005,24(3):236-240. 被引量:20
  • 5V. Petrovi. Subjective tests for image fusion evaluation and objective metric validation[J]. Information Fusion, 2007, 8(2): 208-216.
  • 6Zhou Wang, Hamid R. Sheikh, Alan C. Bovik. No-reference perceptual quality assessment of JPEG compressed images[C]. IEEE International Conference on Image Processing, 2002, 1: I-477-I-480.
  • 7Qu Guihong, Zhang Dali, Yan Pingfan. Information measure for performance of image fusion[J]. Electron. Lett., 2002, 38(7): 313-315.
  • 8Z. Wang, A. C. Bovik, H. R. Sheikh et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 9Chris Howell, Rrchard Moore, Stephen Burks et al.. An evaluation of fusion algorithms using image fusion metrics and human identification performance[C]. SPIE, 2007, 6543: 65430V.
  • 10A. Toet, J. K. I. Jspeert, A. M. Waxman et al.. Fusion of visible and thermal imagery improves situational awareness[J]. Displays, 1998, 18(2): 85-95.

共引文献21

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部