摘要
研究小波框架包子空间对空间L^2(R^n)的分解。运用时频分析方法与逼近论思想,刻画了数量矩阵伸缩的高维小波框架包的特征,构造了若干高维小波框架包子空间,进而,由小波框架包子空间得到了L^2(R^n)的直交分解式。给出高维小波框架包函数的频域表达式,类似于正交基,提出高维紧小波框架包构成空间L^2(R^n)的巴塞尔框架的充分条件,扩展了小波框架应用范围。
The decomposition for space L2( Rn) by subspaces composed of framelet packets are investigated. The characteristics of the high-dimensional wavelet frame packets with a quantity dilation matrix are described by using time-frequency analysis method and functional analysis method. The subspaces from the high-dimensional framelet packets are constructed. Moreover the direct decomposition for space L2( Rn) is obtained from these subspaces composed of framelet packets. The frequency-field formulas for the high-dimensional framelet packets are presented. A sufficient condition is suggested that a Parseval frame constituted from the high-dimensional tight framelet packets of space L2( Rn). These enrich the wavelet frame theory,so that they can be applied to a wider range.
作者
盖晓华
郭学军
冯金顺
陈清江
程正兴
GAI Xiao-hua;GUO Xue-jun;FENG Jin-shun;CHEN Qing-jiang;CHENG Zheng-xingg(School of Electronic and Electrical Engineering,Nanyang Institute of Technology,Nanyang 473004,Henan,China;School of Mathematics and Statistics,Nanyang Institute of Technology,Nanyang 473004,Henan,China;School of Science,Xi'an University of Architecture and Technology,Xi'an 710055,Shaanxi,China;School of Mathematics and Statistics,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第8期34-42,共9页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61504072)
河南省自然科学基金资助项目(102300410022)
关键词
小波框架
小波框架包
面具函数
扩张原理
生成元
wavelet frames
framelet packets
mask functions
expansion principle
generators