期刊文献+

高维小波框架包子空间对空间L^2(R^n)的分解

Decomposition for L^2( R^n) by subspaces composed of high-dimensional tight framelet packets
原文传递
导出
摘要 研究小波框架包子空间对空间L^2(R^n)的分解。运用时频分析方法与逼近论思想,刻画了数量矩阵伸缩的高维小波框架包的特征,构造了若干高维小波框架包子空间,进而,由小波框架包子空间得到了L^2(R^n)的直交分解式。给出高维小波框架包函数的频域表达式,类似于正交基,提出高维紧小波框架包构成空间L^2(R^n)的巴塞尔框架的充分条件,扩展了小波框架应用范围。 The decomposition for space L2( Rn) by subspaces composed of framelet packets are investigated. The characteristics of the high-dimensional wavelet frame packets with a quantity dilation matrix are described by using time-frequency analysis method and functional analysis method. The subspaces from the high-dimensional framelet packets are constructed. Moreover the direct decomposition for space L2( Rn) is obtained from these subspaces composed of framelet packets. The frequency-field formulas for the high-dimensional framelet packets are presented. A sufficient condition is suggested that a Parseval frame constituted from the high-dimensional tight framelet packets of space L2( Rn). These enrich the wavelet frame theory,so that they can be applied to a wider range.
作者 盖晓华 郭学军 冯金顺 陈清江 程正兴 GAI Xiao-hua;GUO Xue-jun;FENG Jin-shun;CHEN Qing-jiang;CHENG Zheng-xingg(School of Electronic and Electrical Engineering,Nanyang Institute of Technology,Nanyang 473004,Henan,China;School of Mathematics and Statistics,Nanyang Institute of Technology,Nanyang 473004,Henan,China;School of Science,Xi'an University of Architecture and Technology,Xi'an 710055,Shaanxi,China;School of Mathematics and Statistics,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2018年第8期34-42,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61504072) 河南省自然科学基金资助项目(102300410022)
关键词 小波框架 小波框架包 面具函数 扩张原理 生成元 wavelet frames framelet packets mask functions expansion principle generators
  • 相关文献

参考文献7

二级参考文献68

  • 1ChuiCK著,程正兴译.小波分析导论.西安交通大学出版社,1994.
  • 2Toliyat H A, Abbaszadeh K, Rahimian M M, Olson L E. Rail defect diagnosis using wavelet packet decomposition. IEEE Trans. Indus. Appli., 2003, 39:1454-1461.
  • 3Martin M B, Bell A E. New image compression technique using multiwavelet packets. IEEE Trans. Image Processing, 2001,10(4): 500-511.
  • 4Philippe P, Saint-Martin F M, Lever M. Wavelet packet filterbanks for low time delay audio coding. IEEE Trans. Speech and Audio Processing, 1999,7(3): 310-322.
  • 5Chui C K, Li Chun. Nonorthonormal wavelet packets. SIAM Math. Anal., 1993, 24(3): 712-738.
  • 6Cohen A, Daubeches I. On the instability of arbitrary biorthogonalwavelet packets. SIAMMath. Anal.,1993,24(5): 1340-1354.
  • 7Kessler B. A construction of compactly supported biorthogonal scaling vettors and multiwavelets on R^2. J. Approx. Theory., 2002,117:229-254.
  • 8DENG Hai,LING Hao.Fast solution of electromagnetic integral equations using adaptive wavelet packet transform[J].IEEE Trans.Antennas and Propagation,1999,47(4):674-682.
  • 9TOLIYAT H A,ABBASZADEH K,RAHIMIAN M M.et al.Rail defect diagnosis using wavelet packet decomposition[J].IEEE Trans.Indus.Appli.,2003,39:1454-1461.
  • 10MARTIN M B,BELL A E.New Image compression technique using multiwavelet packets[J].IEEE Trans.Image Processing,2001,10(4):500-511.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部