摘要
利用上下解单调迭代方法,考虑有序Banach空间E中三阶时滞微分方程u″′(t)+M_0u(t-τ_0)=f(t,u(t),u(t-τ_1),u(t-τ_2)),t∈R,2π-周期解的存在性,其中f:R×E^3→E连续,关于t以2π-为周期,τ_0,τ_1,τ_2为正常数。通过建立新的极大值原理和构造方程2π-周期解的单调迭代求解程序,得到了该方程2π-周期解的存在性与唯一性结果。
Applying the monotone iterative method of upper and lower solutions,we discuss the existence of 2π-periodic solutions for the third-order differential equation with delays in ordered Banach space Eu″′( t) + M0u( t-τ0)= f( t,u( t),u( t-τ1),u( t-τ2)), t∈R,where f:R × E3→E is a continuous function which is 2π-periodic in t,and τ0,τ1,τ2 are positive constants. By establishing a new maximum principle,a monotone iterative procedure for the equation is constructed. Some existence and uniqueness results of 2π-periodic solutions for this equation are obtained.
作者
陈雨佳
杨和
CHEN Yu-jia;YANG He(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,Chin)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第8期84-94,共11页
Journal of Shandong University(Natural Science)
基金
国家基金委青年基金科学资助项目(11701457)
甘肃省科技计划资助项目(17JR5RA071)
关键词
有序BANACH空间
极大值原理
时滞微分方程
单调迭代方法
周期解
ordered Banach space
maximum principle
differential equation with delays
monotone iterative technique
periodic solution