摘要
皮尔士、拉卡托斯和欧里斯特对于数学可谬性的论断是从宏观的角度进行的。数学证明的可审查性可以最大限度地保证其正确性,但机器证明和长证明使得审查难以进行,它们的存在也为数学可谬性提供了微观证据。
Peirce,Lakatos,and Ernest claim that the mathematics is fallibility from a macroscopic view. The mathematical proof surveyability ensures its correctness up to the hilt,but machine proof and long proof make surveying difficult,they provide the micro evidence for mathematical fallibility.
作者
张晓贵
ZHANG Xiao - gui(The School of Mathematics and Statistics of Hefei Normal University,Hefei 230601,China)
出处
《科学技术哲学研究》
CSSCI
北大核心
2018年第4期58-62,共5页
Studies in Philosophy of Science and Technology
关键词
数学证明
可审查性
数学可谬性
mathematical proof
surveyability
mathematical fallibility