期刊文献+

热带假丝酵母脂肪醛脱氢酶基因CtAld1和CtAld2的功能评价 被引量:1

Functional identification of fatty aldehyde dehydrogenase genes CtAld1 and CtAld2 from Candida tropicalis
原文传递
导出
摘要 【目的】热带假丝酵母是发酵法生产二元酸的重要工业菌株,具有较高的ω-氧化活性。脂肪醛脱氢酶在ω-氧化途径中起重要作用,催化脂肪醛生成脂肪酸,但其具体催化功能及对细胞生理影响还未被系统研究。本文通过删除脂肪醛脱氢酶基因CtAld1和CtAld2鉴定了其在ω-氧化途径中的功能。【方法】通过基因组信息挖掘获得热带假丝酵母脂肪醛脱氢酶基因CtAld1和CtAld2序列,在此基础上,通过同源重组敲除CtAld1和CtAld2基因。考察突变株的生长和胞内脂肪醛脱氢酶活性变化,并评价CtAld1和CtAld2基因敲除对细胞二元酸合成能力的影响。【结果】分别获得了热带假丝酵母突变株XZX-1(ΔCtAld1/ΔCtAld1)、XZX-2(ΔCtAld2/ΔCtAld2)和XZX-12(ΔCtAld1/ΔCtAld1,ΔCtAld2/ΔCtAld2)。在以十二烷为唯一碳源的培养基中,敲除CtAld2基因显著抑制细胞的生长,胞内脂肪醛脱氢酶活性降低为出发菌株的30%;敲除CtAld1基因尽管会使细胞损失一部分醛脱氢酶活性,但能够一定程度地提升细胞在十二烷中的生长性能。敲除CtAld1或CtAld2会降低菌株二元酸产量,组合敲除CtAld1和CtAld2严重削弱菌株十二碳二元酸的合成能力。【结论】CtAld2对热带假丝酵母细胞的生长和十二碳二元酸的合成具有重要作用,缺失CtAld1或CtAld2基因降低细胞的二元酸合成能力。CtAld1和CtAld2可作为热带假丝酵母ω-氧化途径代谢工程改造的潜在靶点。 [Objective] Candida tropicalis has become an important industrial strain to produce dicarboxylic acids due to its high ω-oxidation activity. Fatty aldehyde dehydrogenases(FALDHs) play important roles in the ω-oxidation pathway, converting fatty aldehydes to fatty acids. However, FALDHs characterization and their roles in the synthesis of dibasic acids have not been studied in depth. Therefore, we cloned two genes CtAld1 and CtAld2 encoding FALDHs and evaluated their function in cell phenotype, enzyme activity and dicarboxylic acids accumulation. [Methods] We screened two genes of CtAld1 and CtAld2 through genome mining and sequence alignment. Based on sequence analysis, we deleted CtAld1 and CtAld2 either separately or accumulatively by homologous recombination method, and generated various mutants. The effect of deletion of CtAld1 and CtAld2 on cell growth, FALDH activity and dodecanedioic acid(DCA12) production were evaluated and compared. [Results] XZX-1(ΔCtAld1/ΔCtAld1), XZX-2(ΔCtAld2/ΔCtAld2) and XZX-12(ΔCtAld1/ΔCtAld1, ΔCtAld2/ΔCtAld2) were obtained. When using dodecane as sole carbon source, deletion of CtAld2 gene significantly inhibited cell growth, and the intracellular FALDH activity was only 30% of the parental strain. Deleting CtAld1 had a slight promotion of cell growth, however intracellular FALDH activity was decreased to some extent. Furthermore, simultaneous deletion of CtAld1 and CtAld2 significantly impaired the cell growth performance and decreased FALDH activity, thus causing a distinct lower DCA12 yield compared to the wild type strain. [Conclusion] The deletion of CtAld1 in C. tropicalis could reduce the yield of DCA12. And CtAld2 plays an important role in the growth on dodecane and production of DCA12. To our knowledge, they could be recruited as target genes for metabolic engineering of ω-oxidation pathway in C. tropicalis.
作者 王泽政 张利华 张满琪 胡世元 李莉 沈微 樊游 陈献忠 Zezheng Wang;Lihua Zhang;Manqi Zhang;Shiyuan Hu;Li Li;Wei Shenz;You Fan;Xianzhong Chen(Key Laboratory of Industrial Biotechnology,Ministry of Education,School of Biotechnology,Jiangnan University,Wuxi 214122,Jiangsu Province,China;Evonik(Shanghai)Investment Management Co.Ltd.,Shanghai 201108,China)
出处 《微生物学报》 CAS CSCD 北大核心 2018年第8期1492-1502,共11页 Acta Microbiologica Sinica
基金 江苏省自然科学基金(BK20171138) 国家“863计划”(2013AA102101-5)
关键词 热带假丝酵母 脂肪醛脱氢酶 基因敲除 十二碳二元酸 Candida tropiealis fatty aldehyde dehydrogenase gene disruption dodecanedioic acid
  • 相关文献

参考文献2

二级参考文献23

  • 1甄娜,何连芳,周景辉.热带假丝酵母处理红麻亚铵法制浆废液的研究[J].造纸科学与技术,2007,26(2):26-29. 被引量:6
  • 2陈远童.十二碳二元酸工业生产试验研究[J].微生物学通报,1998,25(4):244-244.
  • 3Sinchez S, Bravo V, Garcia JF, Cruz N, Cuevas M. Fer- mentation of D-glucose and D-xylose mixtures by Can- dida tropicalis NBRC 0618 for xylitol production. Worm J Microbiol Biotechnol, 2008, 24(5): 709-716.
  • 4Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A. Single cell proteins: as nutritional enhancer. Adv Appl Sci Res, 2011, 2(5): 396-409.
  • 5Gao YR, Li DP, Liu Y. Production of single cell protein from soy molasses using Candida tropicalis. Ann Microbiol, 2012, 62(3): 1165-1172.
  • 6Fernandes P, Cabral J M S. Phytosterols: applications and recovery methods. Bioresour Technol, 2007, 98(12): 2335-2350.
  • 7Gleeson MA, Haas LO, Cregg JM. Isolation of Candida tropicalis auxotrophic mutants. Appl Environ Microb, 1990, 56(8): 2562-2564.
  • 8Huf S, Kriigener S, Hirth T, Rupp S, Zibek S. Biote- chnological synthesis of long-chain dicarboxylic acids as building blocks for polymers. Eur J Lipid Sci Tech, 2011, 113(5): 548-561.
  • 9Hara A, Arie M, Kanai T, Matsui T, Matsuda H, Furuhashi K, Ueda M, Tanaka A. Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygro- mycin B resistance gene. Arch Microbiol, 2001, 176(5): 364-369.
  • 10Ueda T, Suzuki T, Tokogawa T, Nishikawa K, Watanabe K Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes. Biochimie, 1994, 76(12) 1217-1222.

共引文献14

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部