摘要
针对核极限学习机高斯核函数参数选优难,影响学习机训练收敛速度和分类精度的问题,该文提出一种K插值单纯形法的核极限学习机算法。把核极限学习机的训练看作一个无约束优化问题,在训练迭代过程中,用Nelder-Mead单纯形法搜索高斯核函数的最优核参数,提高所提算法的分类精度。引入K插值为Nelder-Mead单纯形法提供合适的初值,减少单纯形法的迭代次数,提高了新算法的训练收敛效率。通过在UCI数据集上的仿真实验并与其它算法比较,新算法具有更快的收敛速度和更高的分类精度。
The kernel Extreme Learning Machine (ELM) has a problem that the kernel parameter of the Gauss kernel function is hard to be optimized. As a result, training speed and classification accuracy of kernel ELM are negatively affected. To deal with that problem, a novel kernel ELM based on K interpolation simplex method is proposed. The training process of kernel ELM is considered as an unconstrained optimal problem. Then, the Nelder-Mead Simplex Method (NMSM) is used as an optimal method to search the optimized kernel parameter, which improves the classification accuracy of kernel ELM. Furthermore, the K interpolation method is used to provide appropriate initial values for the Nelder-Mead simplex to reduce the number of iterations, and as a result, the training speed of ELM is improved. Comparative results on UCI dataset demonstrate that the novel ELM algorithm has better training speed and higher classification accuracy.
作者
苏一丹
李若愚
覃华
陈琴
SU Yidan;LI Ruoyu;QIN Hua;CHEN Qin(College of Computer and Electronic Information,Guangxi University,Nanning 530004,Chin)
出处
《电子与信息学报》
EI
CSCD
北大核心
2018年第8期1860-1866,共7页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61762009)~~
关键词
核极限学习机
核参数
Nelder—Mead单纯形法
旆值法
Kernel Extreme Learning Machine (KELM)
Kernel parameter
Nelder-Mead Simplex Method (NMSM)
K Interpolation method