期刊文献+

一个一维离散混沌判定定理及其在伪随机数发生器中的应用 被引量:4

A One-dimensional Discrete Map Chaos Criterion Theorem with Applications in Pseudo-random Number Generator
下载PDF
导出
摘要 该文研究了一类取模运算的1维离散动力系统,提出了一个这类离散映射的混沌判据,利用Marotto定理证明了其混沌的存在性。给出了几个满足该判据的特殊形式的系统,分析了其分岔图、Lyapunov指数谱等基本动力学性质,通过模拟结果验证了理论的正确性。基于新系统设计了一个伪随机数发生器(PRNG),SP800-22随机性检测结果表明了该序列具有良好的伪随机性。进一步给出了一个图像加密方案,其密钥空间可以达到2747。该文提出的新系统的系统参数可以无穷多,所以理论上该加密方案的密钥空间可以无穷大。 A novel one-dimensional discrete chaotic criterion is firstly constructed by studying the modular operation of the discrete dynamical systems. The judgement of the Marotto theorem is used to prove that the suggested dynamical systems are chaotic. Secondly, several special chaotic systems satisfied with the conditions of this paper are given, and the bifurcation diagram and Lyapunov exponential spectrum are also analyzed. Numerical simulations show that the proposed chaotic systems have the positive Lyapunov exponent, which indicates the accuracy of the proposed theory. Additionally, a Pseudo-Random Number Generator (PRNG) is also designed based on the given new chaotic system. Using SP800-22 test suit, the results show that the output sequence of PRNG has good pseudorandom. Finally, as an application of the PRNG, an image encryption algorithm is given. The proposed encryption scheme is highly secure Key space of 2757 and can resist against the statistical and exhaustive attacks based on the experimental results.
作者 臧鸿雁 李玖 李国东 ZANG Hongyan;LI Jiu;LI Guodong(Mathematics and Physics School,University of Science and Technology Beijing,Beijing 100083,China;College of Applied Mathematics,Xinjiang University of Finance and Economics,Urumchi 830012,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1992-1997,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(11461063) 新疆维吾尔自治区自然科学基金(2017D01A24)~~
关键词 混沌判据 Marotto定理 返回扩张不动点 伪随机数发生器 图像加密 Chaotic criterion Marotto theorem (PRNG) Image encryption Snap-back repeller Pseudo-Random Number Generator
  • 相关文献

参考文献2

二级参考文献30

  • 1王蕾,汪芙平,王赞基.一种新型的混沌伪随机数发生器[J].物理学报,2006,55(8):3964-3968. 被引量:31
  • 2Li T Y, Yorke J A. Period three implies chaos [J]. Amer Math Monthly, 1975, 82: 985.
  • 3Zhang W N, Agarwal R P. Construction of mappings with attracting cycles [J]. Comput Math Appl, 2003, 45: 1213.
  • 4Zhou Z . Periodic orbits on dynamical systems [J]. Comput Math Appl, 2003, 45: 935.
  • 5张伟年.动力系统基础[M].北京:高等教育出版社,2000.
  • 6Yang L. Recent advance on determining the number of real roots of parametric polynomials [J]. Journal Symbolic Comput, 1999, 28: 225.
  • 7杨路,张景中,侯晓荣.非线性代数方程组与定理机器证明[M].上海:上海科技教育出版社,1995.23-35.
  • 8SPROTT J G. Chaos and Time-sries Analysis[M]. Oxford: Oxford University Press, 2003: 1-120.
  • 9LI Tianyan and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992.
  • 10BARBERIS G E. Non-periodic pseudo-random numbers used in Monte Carlo calculations[J]. Physica B-Condensed Matter, 2007, 398: 468-471. doi: 10.1016/j.physb.2007.04.088.

共引文献4

同被引文献39

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部