期刊文献+

单模As-Se红外玻璃光纤的制备及其性能研究 被引量:1

Fabrication of Single-Mode As-Se Infrared Glass Fiber and Its Performance
原文传递
导出
摘要 随着红外光纤制备技术的不断发展,低损耗、高非线性且结构完美的红外硫系光纤的研制迫在眉睫。采用了传统的熔融淬冷法和动态蒸馏纯化工艺制备了As40Se58Te2和As40Se60两种玻璃样品,基于两次多步挤压法制备了完美芯包阶跃结构的硫系光纤预制棒,在聚合物的保护下拉制出了损耗较低的阶跃型单模硫系玻璃光纤。结果表明:蒸馏纯化工艺可有效去除硫系玻璃中大部分杂质,2%摩尔百分比的Se被Te替换可有效实现小数值孔径并达到单模传输条件,采用截断法对单模硫系光纤进行了损耗测试,其最低损耗为1.66 d B/m(6.06μm),工作波段为2.5~12μm。以光参量放大器(OPA)为抽运源获得了覆盖1.5~13.2μm(40 d B带宽)的超连续谱输出,光纤有较好的中远红外传输性能和极高的光学非线性性能。 With the development of infrared optical fiber technology, it is urgent to develop an infrared low loss chalcogenide optical fibers with perfect-structure and high nonlinearity. In this paper,the two kinds of glass samples of As40 Se58 Te2 and As40 Se60 are prepared by the traditional vacuum melt-quenching method and dynamic distillation purification process. Then we obtain a fine-structured chalcogenide optical fiber prefabricated rod prepared by two multi-step extrusion method. After that,the preform is drawn into a low loss step type single-mode chalcogenides glasses fiber under the protection of polyether sulfone( PES) polymer. The results show that the distillation process can effectively remove most of the impurities in the chalcogenide glasses. 2% mole percent of Se is replaced by Te,which can effectively achieve a small numerical aperture( NA) and single-mode transmission characteristics. The single-mode chalcogenides fiber loss test is measured by the truncation method with a Fourier transform infrared spectroscopy spectrometer. The minimum loss of thisfiber can be reduced to 1. 66 dB/m at 6. 06 μm and these glasses working band is from 2. 5 to 12 μm. The output of a supercontinuum spectrum covering 1. 5-13. 2 μm(40 dB bandwidth) is obtained with an optical parametric amplifier(OPA) as the pump source. The fiber has good mid-far infrared transmission performance and extremely high optical nonlinearity.
作者 薛祖钢 陈朋 田优梅 潘章豪 赵浙明 王训四 张培晴 戴世勋 聂秋华 Xue Zugang1,2, Chen Peng1,2, Tian Youmei1,2, Pan Zhanghao1,2, Zhao Zheming3, Wang Xunsi1,2, Zhang Peiqing1,2, Dai Shixun1,2, Nie Qiuhua1,2(1.Laboratory of Infrared Material and Devices, The Research Institute of Advanced Technology, Ningbo University, Ningbo, Zhejiang 315211, China; 2Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China;3.Nanhu College, Jiaxing University, Jiaxing, Zhejiang 314001, Chin)
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第7期191-197,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61705091 61627815 61377099) 浙江省自然科学基金(LR18F050002) 浙江省光电探测材料及器件重点实验室开放课题(2017004) 嘉兴市科技局项目(2017AY13010) 宁波大学王宽诚幸福基金
关键词 光纤光学 红外玻璃光纤 蒸馏纯化 非线性光学材料 optical communications infrared glass fiber distillation and purification nonlinear optical materials
  • 相关文献

参考文献6

二级参考文献63

  • 1戴世勋,徐铁峰,聂秋华,沈祥,张军杰,胡丽丽.荧光俘获效应对掺铒氧化物玻璃光谱性质的影响[J].物理学报,2006,55(3):1479-1485. 被引量:12
  • 2Yan F, Zhu T J, Zhao X B, Dong S R 2007 J. Univ. Sci. Technol. B 14 64.
  • 3Ziani N, Belhadji M, Heireche L, Bouchaour Z, Belbachir M 2005 J. Phys. B 358 132.
  • 4Maurugeon S, Bureau B, Boussard-Pledel C, Faber A J, Zhang X H, Geliesen W, Lucas J 2009 J. Non-Cryst. Solids 355 2074.
  • 5Chung S, Kim H C, Lee S 2009 Solid State Commun. 149 1739.
  • 6Anedda A, Carbonaro C M, Serpi A, Chiodini N, Paleari A, Scotti R, Spinolo G, Pruneri V 2001 J. Non-Cryst. Solids 280 287.
  • 7Danto S, Houizot P, Boussard-Pledel C Zhang X H, Smektala F, Lucas J 2006 Adv. Funct. Mater. l~i 1847.
  • 8Tauc J 1974 Amorphous and Liquid Semiconductor (New York: Plenium Press) p171.
  • 9Urbach E 1953 Phys. Rev. 92 1324.
  • 10Zhang G J, Gu D H, Gan F X 2005 Chin. Phys. 14 218.

共引文献28

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部