期刊文献+

利用密集匹配点云的建筑单体提取算法研究 被引量:14

Single Part of Building Extraction from Dense Matching Point Cloud
原文传递
导出
摘要 以三维点云或模型表达的单体化建筑信息是城市规划、市政管理、数字城市建设等多个应用领域的关键信息要素。利用航空影像密集匹配点云,提出了一种针对复杂建筑区域建筑单体的快速提取算法。在对点云进行滤波处理及水平点云提取和聚类的基础上,将点云面域投影至二维平面格网化,并结合立面信息及面域几何特征将非屋顶面的点云面域滤除,进一步基于栅格图像计算点云面域之间的拓扑关系,得到了各建筑单体的点云覆盖范围,最后实现了建筑单体点云的提取。实验结果表明,所提算法对建筑单体点云提取的召回率和查准率平均值分别为92.6%和89.9%,说明所提算法能够有效支撑复杂区域建筑单体的提取。 Single part information of building represented by three-dimensional point cloud or model representation is a key information factor in numbers of applications,such as urban planning,municipal management and digital city construction.Using dense matching point cloud generated by aerial images,we propose a new algorithm for rapidly single part of building extraction in complex construction area. On the basic of ground filtering and clustering after horizontal point cloud extraction,the algorithm projects all the point cloud clusters into the two dimensional grid. Non-roof segments are removed based on building fa9 ade and clusters’ geometrical characteristic. Then,topological relationships between clusters computed based on grid images are adopted to generate the range of single part of the building. And the single part point clouds are extracted finally. Experimental results show that the average recall and the average precision of single part of building extraction are 92. 6% and 89. 9%,and it means that it is efficient for our algorithm to extract single part of building in complex urban area.
作者 闫利 魏峰 Yan Li, Wei Feng(School of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei 430079, Chin)
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第7期264-271,共8页 Chinese Journal of Lasers
基金 国家重点研发计划(2017YFC0803802)
关键词 遥感 密集匹配点云 建筑单体化 格网化 拓扑关系 remote sensing dense matching point cloud single part of building grid partition topological relationship
  • 相关文献

参考文献4

二级参考文献31

  • 1赖旭东,万幼川.机载激光雷达距离图像的边缘检测研究[J].激光与红外,2005,35(6):444-446. 被引量:20
  • 2靳克强.机载激光雷达数据滤波生成DEM技术研究[D].郑州:解放军信息工程大学测绘学院,2011.
  • 3Baltsavias E,Stallmann D.Advancement in Matching of SPOT Images by Integration of Sensor Geometry and Treatment of Radiometric Differences[J].IAPRS,1992,29(B4):916-924.
  • 4Gabet L,Giraudon G,Renouard L.Automatic Generation of High Resolution Urban Zone Digital Elevation Models[J].International Journal of Photogrammetry and Remote Sensing,1997,52(1):33-47.
  • 5Vosselman G, Dijkman S. 3D building model reconstruction from point cloud and ground plan [ J ]. International Ar- chives of Photogrammetry and Remote Sensing,2001 (34) : 37 - 43.
  • 6Tao G, Yasuoka Y. Combining high resolution satellite im- agery and airborne laser scanning data for generating bare- land and DEM in urban areas [ C ]//International Workshop on Visualization and Animation of Landscape, [ S. L. ] : Re- mote Sensing and Spatial Information Sciences ,2002.
  • 7Martin Huber, Wolfgang Schickler, Stefan Hinz. Fusion of LiDAR data and aerial imagery for automatic reconstruction of building surfaces [ C ]. Berlin : Remote Sensing and Data Fusion over Urban Areas,2003.
  • 8Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Searching [ J ]. Communications of ACM,1975,18(9) :509 -517.
  • 9Lee D H, Lee K M, Lee S U. Fusion of lidar and imagery for reliable building extraction [J]. Photogrammetric Engineering &Remote Sensing, 2008, 74(2): 215-225.
  • 10Hu J, You S, Neumann U. Integrating lidar, aerial image and ground images for complete urban building modeling[C]. IEEE Third International Symposium on aD Data Processing, Visualization, and Transmission, 2006 : 184-191.

共引文献90

同被引文献132

引证文献14

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部