期刊文献+

氢等离子体作用下的Zr薄膜氢化特性研究 被引量:1

INVESTIGATION ON THE HYDROGENATION PROPERTIES OF Zr FILMS IN PLASMA ACTION
下载PDF
导出
摘要 本文研究Zr薄膜在等离子体作用下的氢化特性.测试表明,与分子氢相比,氢等离子体作用下氢化速率明显增高,在室温和≈2Pa氢压的DC放电条件下,氧化10 min样品的氢化浓度可达饱和值,即 66.07(原子分数,%),远大于该压强下的气体氢化浓度. 在非超清洁系统中,等离子体氢化在样品表面产生大量的氧污染和少量的碳污染.少量的表面氧化物并不阻碍等离子体氢化,但随着污染的增加,氢化浓度却大大减少.Ni对样品表面氢分子解离吸附和氢原子再结合逸出有着不同程度的催化作用,在低的放电压强和放电电流下,表面镀Ni使Zr的稳态氢化浓度减小;而在高压强、低电流下,表面镀Ni可增加 Zr的氢化效率. The hydrogenation properties of Zr samples with and without Ni overlayer in plasma action were investigated using non-Rutherford backscattering (non-RBS) and elastic recoil detection analysis (ERDA). The theoretical maximum hydrogen capacity, 66.7 (atomic fraction, %), was almost attained when the sample was hydrided at a hydrogen pressure of approximate to2 Pa and a substrate temperature of 393 K for 10 min. This reaction rate is significantly greater than that for gas hydrogenation under the same hydrogen pressure and substrate temperature. It was found that the absorption-of hydrogen is related to C and 0 contamination on the sample surface. Though the oxide layer does not act as a diffusion barrier to atomic hydrogen, the maximum equilibrium hydrogen content dropped drastically with increasing total contamination. Also, the influence of the Ni overlayer on the plasma hydrogenation s discussed. When the sample was hydrided at the relatively low discharge hydrogen pressure (approximate to 2 Pa) and current (approximate to0.025 A), the catalytic effect of the Ni overlayer caused the hydrogen content of the Ni-coated sample to be always a bit less than that of sample without the Ni overlayer. However, the Ni-coated sample demonstrated higher hydriding efficiency when hydried at a higher hydrogen pressure (10-20 Pa) and the same discharge current.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2002年第9期979-982,共4页 Acta Metallurgica Sinica
基金 国家自然科学基金委员会 中国工程物理研究院与国家联合基金10076003资助项目
关键词 氢等离子体 氢化 锆薄膜 Zr thin film hydrogenation plasma
  • 相关文献

参考文献10

  • 1[1]Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H,Matsuda T and Kobayashi S. J Alloys Compd, 1999; 293-295:23
  • 2[2]Oya Y, Suzuki T, Iinuma K, Morita K, Horikawa T, Abe K. Appl Surf Sci, 2001; 169-170:246
  • 3[3]Bloch J, Mintz M H. J Alloys Compd, 1997; 253-254:529
  • 4[4]Zaluski L, Zaluska A, Strom-Olsen J O. J Alloys Compd,1997; 253-254:70
  • 5[5]Lee S M. Park Y J, Lee H Y, Kim K C, Baik H K. Intermetallics, 2000; 8:781
  • 6[6]Yoon Y J, Kim K W, Baik H K, Jang S W, Lee S M. Thin Solid Films, 1999; 350:138
  • 7[7]Ashida K, Watanabe K, Ikena S, Mori K. Fusion Eng Design, 1998; 39-40:1049
  • 8[8]Shi L Q, Zhou Z Y, Zhao G Q. J Vac Sci Technol , 2000;A18:2262
  • 9[9]Prodromides A E, Scheuerlein C, Taborelli M. Vacuum,2001; 60:35
  • 10[10]Martin M, Gommel C, Borkhart C, Fromm E. J Alloys Coumpd, 1996; 238:193

同被引文献16

  • 1马爱华,郑华,刘实,王隆保.磁控溅射Ti合金薄膜结构特征及贮氢性能[J].材料研究学报,2005,19(1):64-71. 被引量:5
  • 2Knapp J A, Browning J F. Journal of Applied Physics [ J ], 2009,105(5) : 1 7.
  • 3Knapp J A, BrowningJ F,Bond G M.Nuclear Instruments and Methods in Physics Reseach[ J], 2010, B268: 2141 - 2143.
  • 4GeNes D S, Brewer L N, Kotula P G. Effects of Radiation on Materials[ J] ,2008:219 225.
  • 5Hans Ulrich Krebs,Olaf Bremert, Michael Stormer, et al.Ap- plied Surface Science[ J], 1995,86: 90 - 94.
  • 6Robert Eason. Pulsed Laser Deposition of Thin Films: Appli- cations-Led Growth of Functional Materials[ M ]. New Jersey: John Wiley & Sons Inc,2007:363-380.
  • 7Duffey T P, McNeela T G, Yamamoto T,et al. Physical Review [J], 1995, B51(20) : 14652 - 14663.
  • 8Toftmann B, Schou J. Physical Review Letter [ J ], 2000, 84 (17) : 3998 - 4001.
  • 9Sebastian Fabler, Hans-Ulrich Krebs. Applied Surface Science[J],1996,96- 9861 - 65.
  • 10Sttirmer M, F'tler S, Krebs H U, et al. Nuclear Instruments and Methods in Physics Reseach[ J], 1997, B122:503- 506.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部