期刊文献+

带有非负非线性源的拟线性双曲方程BV解的存在唯一性

Existence and uniqueness of BV solution for a quasilinear hyperbolic equation with nonnegative nonlinear source
下载PDF
导出
摘要 主要研究了一类带有非负的非线性源的拟线性双曲守恒律方程的Cauchy问题,其中初值为有限Borel测度.克服了初值和非线性项带来的阻碍,得到了局部BV解的存在唯一性. In this paper, the Cauchy problem of quasilinear hyperbolic conservation law equations with nonnegative nonlinear sources is studied. The initial value is the finite Borel measure. By overcoming the obstacles caused by initial values and nonlinear terms, the existence and uniqueness of local BV solutions are obtained.
作者 张艳芳 佟丽宁 ZHANG Yanfang;TONG Lining(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2018年第2期343-364,共22页 Communication on Applied Mathematics and Computation
关键词 拟线性双曲方程 BV解 存在唯一性 quasilinear hyperbolic equation BV solutions existence uniqueness
  • 相关文献

参考文献1

二级参考文献11

  • 1袁洪君.退缩抛物方程正则化方法在双曲守恒律研究中的应用[J].吉林大学自然科学学报,1995(4):1-4. 被引量:7
  • 2Liu T. P. and Pierre M., Source solutions and asymptotic behaviour in Conservation Law [J], J. Differential Equations, 1984, 51:419-441.
  • 3Guarguaglini F. R., Singular solutions and asymptotic behaviour for a class of con- servation laws with absorption [J], Commun. in Partial Differential Equations, 1995, 20:1395-1425.
  • 4Yuan Hongjun, Existence and uniqueness of BV solutions for a conservation law with σ-finite Borel measures as initial conditions [J], J. Differential Equations, 1998, 146:90- 120.
  • 5Yuan Hongjun, Cauchy's problem for degenerate quasilinear hyperbolic equations with measures as initial values [J], J. Partial Differential Equations, 1999, 12:149-178.
  • 6Yuan Hongjun, Source-type solutions of a singular conservation law with absorption [J], Nonlinear Analysis: Theory, Methods and Applications, 1998, 32(4):467-492.
  • 7Yuan Hongjun, The Cauchy problem for a singular conservation law with measures as initial conditions [J], J. Math. Anal. Appl, 1998, 225:427-439.
  • 8Yuan Hongjun and Zheng Xiaoyu, Existence and uniqueness for a quasilinear hyperbolic equation with a-finite Borel measures as initial conditions [J], J. Math. Anal. Appl, 2003, 277:27-50.
  • 9Yuan Hongjun and Xu Xiaojing, BV solutions for the first order quasilinear equations with local measure as initial value [J], Journal of Jilin University (Science Edition), 2004, 42(3):380-386.
  • 10Wu Z. Q., Zhao Q. N., Yin J. X. and Li H. L., Nonlinear Diffusion Equations [M], Singapore: World Scientific, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部