期刊文献+

多示例学习问题研究进展综述 被引量:5

A review of multi-instance learning research
下载PDF
导出
摘要 多示例学习是一种特殊的机器学习问题,近年来得到了广泛的关注和研究,许多不同类型的多示例学习算法被提出,用以处理各个领域中的实际问题.针对多示例学习的算法研究和应用进行了较为详细的综述,介绍了多示例学习的各种背景假设,从基于示例水平、包水平、嵌入空间三个方面对多示例学习的常见算法进行了描述,并给出了多示例学习的算法拓展和若干领域的主要应用. Multi-instance learning is a special kind of machine learning problem, has received extensive attention and been researched on in recent years. Many different types of multi-instance learning algorithms have been proposed to deal with practical problems in various fields. This paper reviews the algorithm research and application of multiinstance learning in detail, introduces various background assumptions,and introduces multi-instance learning from three aspects: instance level, bag level, and embedded space.Finally we provide the algorithm extensions and maior applications in several areas.
作者 田英杰 胥栋宽 张春华 TIAN Yingjie1,2, XU Dongkuan1,2, ZHANG Chunhua3(1. Research Center on Fictitious Economy and Data Science, the Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China;2. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; 3. School of Information, Renmin University of China, Beijing 100872, Chin)
出处 《运筹学学报》 CSCD 北大核心 2018年第2期1-17,共17页 Operations Research Transactions
基金 国家自然科学基金(Nos.71731009,61472390,71331005,91546201,11771038) 北京自然科学基金(No.1162005)
关键词 多示例学习 分类问题 支持向量机 深度学习 multi-instance learning classification problem bag support vector machine deep learning
  • 相关文献

同被引文献20

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部