期刊文献+

特朗伯墙体冬季集热性能的CFD模拟分析 被引量:5

Simulation of the thermal performance of a Trombe wall in winter using computational fluid dynamics
下载PDF
导出
摘要 近年来,利用计算流体动力学(Computational Fluid Dynamics,CFD)来评价、改善特朗伯墙体集热性能的研究大大降低了实验成本。所以,数值模拟成为特朗伯墙体进一步节能设计工作的关键。本文从集热墙冬季采暖特性入手,简化了3D模型;分析了墙体传热过程,合理地设置边界条件;模拟了冬季采暖期内稳态时特朗伯墙体的温度场、速度场分布特征。由尺寸参数影响分析得出,对于2.8 m(髙)×3 m(宽)的特朗伯墙体,通风孔直径的最佳尺寸为0.18 m;空气间层厚度取0.16~0.18 m较为合适。 Computational Fluid Dynamics(CFD) has been used in recent years to evaluate and improve the thermal performance of passive houses with Trombe walls. This approach has greatly reduced experimental costs. Numerical simulation is the key for designing Trombe walls with the greatest energy savings. The objectives of this study were(i) to use a simplified 3 D model to evaluate the thermal performance of a Trombe wall during winter and(ii) to analyze the heat transfer process of the Trombe wall in order to set its available boundary conditions and(iii) to determine the influence of the dimensions of the Trombe wall on thermal performance. The temperatures and air speed distribution during the winter heating period were simulated with the Trombe wall under steady state conditions. When the Trombe wall was 2. 8 m high × 3 m wide,the optimum size of air inlet and outlet diameter was 0. 18 m. The most appropriate thickness of the air channel was 0. 16 ~ 0. 18 m.
作者 黑赏罡 姜曙光 杨骏 张俊龙 HEI Shanggang;JIANG Shuguang;YANG Jun;ZHANG Junlong(College of Water Conservancy & Architectural Engineering,Shihezi University,Shihezi 832003,China)
出处 《四川建筑科学研究》 2018年第3期116-121,共6页 Sichuan Building Science
基金 新疆建设兵团重大科技项目课题1(2016AA00601)
关键词 特朗伯墙体 集热性能 尺寸参数影响 CFD分析 Trombe wall thermal performance dimension parameters affect CFD analysis
  • 相关文献

参考文献2

二级参考文献16

  • 1Utzinger D M, Klein S A. Mitchell J W. the effect of air flow rate in collector-storage walls [J]. Solar energy, 1980, 25(6): 511-519
  • 2Tarazi, Nasri Khadir. A Model of a Trombe wall [J], Renewable Energy, 1991, 1(3-4): 533-541
  • 3Smolec W, Thomas A. Theoretical and experimental investigations of heat transfer in a Trombe wall [J]. Energy Conversion and Management, 1993, 34(5): 385-400
  • 4Ormiston S J, Raithby G D, Hollands K G T. Numerical predictions of convection in a Yrombe wall system [J]. Int. J. Heat Mass Transfer, 1986, 29 (6): 869-877
  • 5Yedder, R Ben, Bilgen E. Natural convection and conduction in Trombe wall systems [J]. International Journal of Heat and Mass Transfer, 1991,34 (4-5): 1237-1248
  • 6Lukic N. The transient house heating condition-the building envelope response factor (BER) [J]. Renewable Energy, 2003, 28(4): 523-532
  • 7Lukic N. The transient house heating condition-the daily changes of the building envelope response factor (BER) [J]. Renewable Energy, 2005, 30(4): 537-549
  • 8Xiande Fang, Yuanzhe Li. Numerical simulation and sensitivity analysis of lattice passive solar heating walls [J]. Solar Energy,2000, 69( 1 ): 55-66
  • 9Torcellini P, Pless S. Trombe walls in low-energy buildings:practical experiences [C]. Proceeding of WorldRenewable Energy Congress Ⅷ. Colorado. 2004
  • 10Zhai Z, Chen Q, Haves P, et al. On approaches to couple energy simulation and computational fluid dynamics programs [J].Building and Environment, 2002, 37(8-9): 857-864

共引文献9

同被引文献37

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部