期刊文献+

数据挖掘实用机器学习技术 被引量:2

Data Mining Practical Machine Learning Technology
下载PDF
导出
摘要 所谓数据挖掘(Knowledge-Discovery in Databases),也叫资料探勘、数据采矿,是数据库知识发现的一个部分。它于信息时代而生,通过这一技术能将庞大而繁杂的数据转化成有用的、可辅助人类进行分析判断的信息,如今,随着经济社会的不断发展,数据挖掘技术的作用逐渐凸显出来,在商务管理、生产控制、市场判断、工程设计与科学研究等领域获得了较广泛的使用。笔者主要概述了数据挖掘,分析了数据挖掘的作用,介绍了机器学习的方法,并探讨了数据挖掘的应用。 Data mining(Knowledge-Discovery in Databases),also called data mining and data mining,is a part of database knowledge discovery.It is born in the information age.Through this technology,it can transform large and complicated data into useful information that can help human beings to analyze and judge.Now,with the continuous development of the economy and society,the role of data mining technology is gradually highlighted,in business management,production control,market judgment,engineering design and design.Scientific research and other fields have been widely used.The author mainly summarizes data mining,analyzes the role of data mining,introduces machine learning methods,and discusses the application of data mining.
作者 刘婧 姜文波 邵野 Liu Jing;Jiang Wenbo;Shao Ye(Haikou University of Economics,Haikou Hainan 571127,China)
机构地区 海口经济学院
出处 《信息与电脑》 2018年第11期164-165,168,共3页 Information & Computer
基金 海南省高等学校教育教学改革研究重点项目"物联网工程专业建设与智慧海南的研究与实践"(项目编号:Hnjg2016ZD-22)
关键词 数据挖掘 机器 学习技术 data mining machine learning technology
  • 相关文献

参考文献3

二级参考文献48

  • 1Lu JJ,Song ZL,Yuan Z.Prediction Method for Normal Association Rules[ A].16th World Computer Congress 2000,Conference on Intelligent Information Processing[ C],China Beijing,2000.512 -515.
  • 2Almullim H,Dietterich TG.Learning with Many Irrelevant Features [ A].9th National Conf.On artificial Intelligence[ C],July 1991.547 - 552.
  • 3Breiman L,Friedman J,Olshen R,et al.Classification and Regression Trees[ M].Wadsworth International Group,1984.
  • 4Cai KY,Chen L.Analyzing software science data with partial repeatability[ J].Journal of Systems and Software,2002,63 (3): 173- 186.
  • 5Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Databases[ J].ACM SIGMOD Issues,1993.22(2): 207 - 216.
  • 6Zhang Chengqi,Zhang Shichao .Association Rule Mining Models and Algorithms[ M].Springer - Verlag,Berlin Heidelberg,2002.
  • 7Zhang Shichao,Zhang Chengqi.Discovering Causality in Large Databases[J].Applied Artificial Intelligence,2002,16( 5): 333 -358.
  • 8Zaiane OR,Han J,Li Z-N,et al.MultiMediaMiner: A System Prototype for Multimedia Data Mining[ A].Proceedings ACM SIGMOD International Conference on Management of Data[ C].ACM Press,Seattle,Washington,USA,June 2 ~4,1998.
  • 9Han J,Dong G,Yin Y.Efficient Mining of Partial Periodic Patterns in Time Series Database[ A].Proceedings of the 15th International Conference on Data Engineering[ C].Sydney,Australia,1999.106-115.
  • 10Bettini C,Wang XS,Jajodia S.Mining Temporal Relationships with Multiple Granularities in Time Sequences [ J].IEEE Data Eng.Bull.,1998,21(1): 32 -38.

共引文献137

同被引文献26

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部