期刊文献+

基于随机森林算法的吴堡站测流断面形态预测 被引量:2

Prediction of Cross-Section Profile of Wubu Station Based on Random Forest Algorithm
下载PDF
导出
摘要 在水文站洪水期流量测验中,受风浪和漂浮物的影响以及设施设备的限制,断面测量是一直以来的难点。传统的断面邻近借用法在断面发生较大冲淤变化时会造成较大的流量计算误差。根据水深与流速之间存在的相关性,使用随机森林算法,以流速分布、水位、河宽等作为输入参数建立断面形态预测模型,对吴堡站测流断面形态进行了预测。结果表明:使用基于随机森林算法的断面形态预测模型来确定测流断面形态是对传统的断面邻近借用法的有力补充;吴堡站流量在3 000 m3/s以上测次的流量预测标准差为13%,大于规范标准,模型仍需改进。建议从两方面来提高断面形态预测的准确性:一是增加特征垂线实测水深等附加参数;二是从断面变化角度出发分析断面冲淤与水沙过程的关系,进而找到更多的影响因子加入回归模型。 During the flood season discharge test of hydrologic station,the measurement of cross section is always difficult because of the influence of wind wave and floating matter and facilities and equipment. The traditional cross section borrowing method will introduce larger flow calculation errors when the cross section changes greatly. According to the correlation between water depth and flow velocity,the random forest algorithm was used to predict the shape of the cross section of Wubu Station,with the flow velocity distribution,the water level and the river width as the input parameters. The results show that the cross section profile based on random forest algorithm is a powerful complement to the traditional cross section borrowing method; the standard deviation of the flow of Wubu Station is more than 3,000 m3/s and the standard deviation is 13%,showing the model still needs to be improved. It is suggested to improve the accuracy of the shape prediction from two aspects: the first is to increase the additional parameters such as the measured water depth of the characteristic vertical line and the second is to analyze the relationship between the erosion and siltation and the process of water and sand from the angle of cross section and then find more influence factors to put into the regression model.
作者 刘炜 赵丽霞 赵淑饶 赵晶 LIU Wei, ZHAO Lixia, ZHAO Shurao, ZHAO Jing(Hydrological Bureau, YRCC, Zhengzhou 450004, Chin)
出处 《人民黄河》 CAS 北大核心 2018年第6期12-15,共4页 Yellow River
基金 水利部公益性行业科研专项(201501004)
关键词 随机森林算法 形态预测 测流断面 吴堡站 random forest algorithm cross-section profile flow measurement section Wubu Station
  • 相关文献

参考文献4

二级参考文献52

  • 1张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 2吴耀军,陶宝祺,袁慎芳.B样条小波神经网络[J].模式识别与人工智能,1996,9(3):228-233. 被引量:14
  • 3焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995..
  • 4李建平.基于小波变换和神经网络的图象压缩[J].神经网络理论与应用研究'96,1996,:436-430.
  • 5柳振宇.基于不变矩和子波神经网络的图象识别[J].神经网络及应用-'94最新进展,1994,:552-555.
  • 6Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 7Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 8Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 9Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 10Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.

共引文献158

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部