期刊文献+

基于时间序列的存储负载预警研究 被引量:2

Storage load forecasting research based on time series
下载PDF
导出
摘要 数据中心存储负载率高会引起应用系统性能下降甚至导致系统瘫痪,预测存储未来的负载情况,能有效避免应用系统因出现存储容量耗尽引发的系统故障。本文采用时间序列分析法探讨研究存储性能历史数据,基于python构建存储容量预测的ARIMA模型,实现存储负载自动预警。 High load rate of data center storage can cause performance reduction of application system and even lead to paralysis.So predicting storage load situation of the future could effectively avoid the system failure of application system due to exhaustion of storage capacity.In this paper,time series analysis is used to analyze the storage performance history data,and the ARIMA model of storage capacity prediction constructed based on python is used to realize the automatic warning of storage load.
作者 李刚 王文婧 LI Gang;WANG Wenjing(Department of Computer Engineering,Shanxi Architectural College,Taiyuan 030006,China;Department of Information Technology,Shanxi Professional College of Finance,Taiyuan 030008,China)
出处 《智能计算机与应用》 2018年第3期188-190,194,共4页 Intelligent Computer and Applications
关键词 存储负载预测 时间序列 ARIMA模型 PYTHON storage load forecasting time series ARIMA model python
  • 相关文献

参考文献2

二级参考文献24

共引文献135

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部