期刊文献+

基于广义超松弛迭代的图像复原 被引量:1

Image Restoration Based on Generalized Successive over Relaxation
下载PDF
导出
摘要 图像复原问题常常可转化为大型线性系统的求解问题。Tikhonov正则化将线性系统求解转化为最小化问题。根据最优性条件将最小化问题转化为鞍点问题,并提出了一种求解该鞍点问题的广义超松弛迭代算法。证明了当松弛因子满足一定条件时广义超松弛迭代算法是收敛的,分析并给出了松弛因子的最优值。在2个实际图像复原问题上的数值实验结果表明,该算法较其他算法复原后图像的峰值信噪比较高、相对误差较小,是十分有效的。 Image restoration problems can often be transformed into solving problems of large linear systems.Tikhonov regularization transforms the solving problems of a linear system to a minimization problem.According to the optimality condition,the minimization problem is converted to the saddle point problem,and a generalized successive over relaxation algorithm for solving the saddle point problem is proposed.It is proved that the generalized successive over relaxation algorithm is convergent when the relaxation factor satisfies certain conditions.The optimal value of the relaxation factor is analyzed and given.The numerical experiment results on two real image restoration problems show that compared with other algorithms,such algorithm has a relatively high peak signal-to-noise ratio and small relative error after the image restoration.
作者 程国 刘亚亚 Cheng Guo;Liu Yaya(College of Mathematics and Computer Application,Shangluo University,Shangluo 726000,China)
出处 《甘肃科学学报》 2018年第3期4-9,共6页 Journal of Gansu Sciences
基金 陕西省教育厅科学研究计划项目(17JK0240) 商洛学院科研基金项目(16SKY008)
关键词 超松弛迭代 图像复原 TIKHONOV正则化 鞍点问题 Successive over relaxation Image restoration Tikhonov regularization Saddle-point problem
  • 相关文献

参考文献2

二级参考文献24

  • 1程国,刘亚亚.求多元函数极值的二次型方法[J].河西学院学报,2008,24(5):20-23. 被引量:4
  • 2刘学鹏.线性代数理论中几个问题的逆向研究[J].大学数学,2005,21(6):118-121. 被引量:6
  • 3田立平,王莲花,谢斌.线性代数中的反问题[J].河南教育学院学报(自然科学版),2006,15(2):1-3. 被引量:2
  • 4石永芳.几个反问题及其求解[J].甘肃联合大学学报(自然科学版),2007,21(1):98-101. 被引量:1
  • 5BUGEAU A, BERTALMIO M, CASELLES V, et al.. A comprehensive framework for image inpaint- ing [J]. IEEE Transactions on Image Processing, 2010, 19(10): 2634-2645.
  • 6BERTALMIO M, VESE L, SAPIRO G, et al.. Simultaneous structure and texture inpainting [J]. IEEE Transactions on Image Processing, 2003, 12(8): 882-889.
  • 7DONG B, HUI J, LI J, etal.. Wavelet frame based blind image inpainting [J]. Applied and Computa- tional Harmonic Analysis, 2012, 32(2):268-279.
  • 8XU Z B, SUN J. Image inpainting by patch propaga- tion using patch sparsity [J] . IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.
  • 9EASI.EY G, LABATE D, LIM W Q. Sparse di-rectional image representations using the discrete shearlet transform [J]. Applied Computational Harmonic Analysis, 2008, 25(1):25-46.
  • 10AFONSO M B, FIGUEIREDO M. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems [J]. IEEE Transactions on Image Processing, 2011, 20(3) : 681-695.

共引文献15

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部