期刊文献+

煤粉射流火焰中碳烟浓度分布的LII测量 被引量:1

Laser Induced Incandescence Measurement of Soot Distribution in a Coal Jet Flame
下载PDF
导出
摘要 基于Hencken型平面携带流反应器,使用激光诱导白炽光法(LII)测量煤粉火焰的碳烟浓度,并研究了激光能量密度F对测量的影响及火焰中碳烟的分布.研究发现,在F≤0.15,J/cm2时,煤颗粒信号相对较弱,碳烟信号占主导;在F>0.15,J/cm2时,煤颗粒信号干扰较强.F=0.05~0.08,J/cm2是最优能量密度范围.对本携带流实验系统,碳烟颗粒在距离出口80,mm处出现,且集中于中心中线4,mm范围内,碳烟浓度随着高度的增加先增加后降低,并在120,mm达到峰值. The soot distribution in a coal jet flame was measured using laser induced incandescence (LII)technique based on a Hencken burner,and the effects of laser fluence(F)on soot measurement in coal flames were investigated. The results show that when F≤0.15 J/cm^2,the interference signal from coal particles is minor and the measured LII signal comes from soot particles. When F〉0.15,J/cm^2,the LII measurement of soot parti-cles is interfered by the LII signal of coal particles. The optimal laser fluence is found to be F=0.05-0.08,J/cm^2 in the present study. Soot particles start to appear at around 80,mm above the exit of the coal jet,and they are mainly formed within 4,mm near the centerline. The soot concentration along the centerline increases with h in the up-stream and then decreases in the downstream. The maximum soot concentration is found at h=120,mm.
作者 许开龙 李卓然 张海 吴玉新 罗开红 吕俊复 Xu Kailong1,Li Zhuoran1,Zhang Hai1,Wu Yuxin1,Luo Kaihong2,Lü Junfu1(1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China; 2. Center for Combustion Energy,Tsinghua University,Beijing 100084,Chin)
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2018年第3期232-237,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51476088)
关键词 激光诱导白炽光法 碳烟 煤粉气流 激光能量密度 laser induced incandescence(LII) soot coal stream laser fluence
  • 相关文献

参考文献4

二级参考文献61

  • 1杨振江.热电偶测温的软件处理方法[J].电子测量技术,1994,17(2):18-20. 被引量:3
  • 2盛昌栋,齐宏,徐明厚,袁建伟,韩才元,马毓义.煤粉气流着火方式与煤粉浓度的关系[J].电站系统工程,1995,11(3):31-37. 被引量:13
  • 3Lighty J S, Veranth J M, Sarofim A F. Combustion aerosols: Factors Governing Their Size and Composition and Implications to Human Health [J]. Journal of the Air and Waste Management Association, 2000, 50(9): 1565- 161.
  • 4Bond T C, Bergstrom R W. Light Absorption by Carbonaceous Particles: An Investigative Review [J]. Aerosol Science and Technology, 2006, 40:27-67.
  • 5Lau C W, Niksa S. The Impact of Soot on the Combustion Characteristic of Coal Particles of Various Types [J]. Combustion and Flame, 1993, 95(1/2): 1 -21.
  • 6Bond T C, Streets D G, Yaxber K F, et al. A Technology- Based Global Inventory of Black and Organic Carbon Emissions From Combustion [J]. Journal of Geophysical Research-atmospheres, 109(D14), doi:10.1029/2003 JD003697.
  • 7McLean W T, Hardesty D R, Pohl J H. Direct Observation of Devolatilizing Pulverized Coal Particles in a Combustion Environment [C]// Eighteenth Symposium (International) on Combustion, Canada, 1980:1239-1248.
  • 8Ma J L, Fletcher T H, Webb B W. Thermophoretic Sampling of Coal-Derived Soot Particles During Devolatilization [J]. Energy &: Fuels, 1995, 9:802-808.
  • 9Fletcher T H, Ma J, Rigby J, et al. Soot in Coal Combustion Systems [J]. Progress in Energy and Combustion Science, 1997, 23:283-301.
  • 10Ma J L, Fletcher T H, Webb B W. Conversion of Coal Tar to Soot During Coal Pyrolysis in a Post-Flame Environment [C]// Twenty-Sixth Symposium (International) on Combustion, 1996:3161 3167.

共引文献20

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部