期刊文献+

L^1空间中第二类Fredholm积分方程的投影数值解法 被引量:3

A Projection of Numerical Solution Methods of Fredholm Integral Equation of the Second Kind in L^1 Space
原文传递
导出
摘要 在L^1空间中对第二类Fredholm积分方程进行均值投影,利用先验估计和后验估计来进行误差估计,数值算例进一步验证了算法的合理性和有效性,体现了均值投影算法的优越性. This paper discussed integral operator with mean projection of Fredholm integral equation of the second kind in L^1 space. And use a priori estimate and a posteriori estimate to error estimates.Numerical examples are shown to demonstrate the rationality and availability of the proposed algorithm. It reflects the superiority of mean projection algorithm.
作者 李博 王丽洁 王辉 张欣 任寒景 LI Bo1, WANG Li-jei2, WANG Hui1, ZHANG Xin3, REN Han-jing4(1. College of Mathematical Sciences, Harbin Normal University, Harbin 150025, China;2. Harbin University of Science and Technology, Harbin 150080, China;3. Department of Basic Courses, Beijing Union University, Beijing 100101, China;4. School of Mathematical Science University of China Academy of Science, Beijing 100049, Chin)
出处 《数学的实践与认识》 北大核心 2018年第14期272-278,共7页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金项目(A201305) 北京市教委科研计划项目(KM201811417013)
关键词 FREDHOLM积分方程 离散化方法 投影算子 L^1空间 Fredholm integral equation discretization method projection opertor L^1 Space
  • 相关文献

参考文献2

二级参考文献9

  • 1Alpert B,Beylkin G,Coifman R,Rokhlin V. Wavelets for the fast solution of second-kind integral equations[J].SIAM Journal on Scientific Computing,1993,(14):159-184.
  • 2Atkinson K E. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind[M].Philadelphia,PA:SIAM,1976.
  • 3Xie W J,Lin F R. A fast numerical solution method for two dimensional Fredholm integral equations of the second kind[J].Applied Numerical Mathematics,2009,(59):9-19.
  • 4M.Thamban Nair. Linear Operator Equations:Approximation and Regularization[M].World Scientific Pubishing Company,2009.
  • 5沈以淡.积分方程[M]北京:北京理工大学出版社,1992.
  • 6华东师范大学数学系.数学分析上册[M].高等教育出版社,1981.
  • 7M.Thamban Nair.Linear Operator Equations:Approximation and Regularization[M].World Scientific Pubishing Company,2009.
  • 8Prem Kythe,Pratap Puri,Computational Methods for Linear Intearal Equations[M].springer,2002.
  • 9刘光新,贾诺,王辉,张欣.L^1空间中第二类Fredholm积分方程数值解法探究[J].数学的实践与认识,2013,43(1):244-249. 被引量:14

共引文献14

同被引文献5

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部