期刊文献+

一类非可微多目标规划的改进的Mond-Weir型对偶 被引量:2

The Improved Mond-Weir Duality for a Class of Nondifferentiable Multiobjective Programming
原文传递
导出
摘要 【目的】研究一类非可微多目标规划问题改进的Mond-Weir型对偶。【方法】分析Mond-Weir型对偶问题基础上,给出该问题的一类改进的Mond-Weir型对偶模型,利用G-不变凸性证明原问题与对偶问题之间的对偶结果。【结果】在适当条件下,得出该问题与对偶问题的弱对偶定理、强对偶定理和非极大逆对偶定理并进行证明。【结论】改进的MondWeir型对偶结果可以在更弱的条件下得以证明。 [Purposes]The improved Mond-Weir type dual problem of a class of nondifferentiable multiobjective programs were studied.[Methods]The improved Mond-Weir type dual problem is formulated.G-invex assumption were used to establish duality theorems relating the problem and the dual problems which based on the analysis of Mond-Weir type dual problem.[Findings]Weak duality theorems,strong duality theorem and no-maximal converse duality theorem were established under suitable conditions.[Conclusions]The improved Mond-Weir duality results were proved under weaker assumptions.
作者 赵洁 ZHAO Jie(College of Mathematics and Computer,College of Foreign Trade and Business,Chongqing Normal University,Chongqing 401520,China)
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期21-24,共4页 Journal of Chongqing Normal University:Natural Science
基金 重庆师范大学涉外商贸学院"中青年骨干教师培养计划"
关键词 不可微规划 多目标规划 改进的Mond-Weir型对偶 G-不变凸 nondifferentiable programming multiobjective programming the improved Mond-weir duality G-invex function
  • 相关文献

参考文献2

二级参考文献10

  • 1Hanson M A. On sufficiency of the Kuhn-Tucker condi- tions[J]. Journal of Mathematical Analysis and Applica- tions, 1981,80(2) :545-550.
  • 2Hanson M A, Mond B. Invex functions and duality[J]. Mathematical Programrning, 1985,37 : 51-58.
  • 3Craven B D,Glover B M. Nondifferentiable symmetric dual- ity[J]. Journal of the Australian Mathematical Society, 1985,39:1-20.
  • 4Jeyakumar V, Mond B. On generalised convex mathematical programming[J]. Journal of the Australian Mathematical Society, 1992,34:43-53.
  • 5Antczak T. New optimality conditions and duality results of G-type in differentiable mathematical programming [J].Nonlinear Analysis, 2007,66 : 1617-1632.
  • 6Antczak T. On G-invex muhiobjective programming. PartI. Optimality[J]. Journal of Global Optimization, 2009,43 (1) :97-109.
  • 7Antezak T. On G-invex multiobjective programming. Part II. Duality [J]. Journal of Global Optimization, 2009, 43 (1) :111-140.
  • 8Kim H J,Seo Y Y,Kim D S. Optimality conditions in non- differentiable G-invex multiobjective programming[J]. Journal of Inequalities and Applications, 2010, DOI: 10. 1155/2010/172059.
  • 9Clarke F H. Optimization and nonsmooth analysis[M]. New York :John Wiley, 1983.
  • 10赵洁.一类不可微多目标规划的Wolfe型对偶[J].重庆师范大学学报(自然科学版),2014,31(4):30-36. 被引量:2

共引文献4

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部