摘要
【目的】在风险资产的价格满足跳-扩散过程且负债满足扩散过程时,研究目标是求得时间一致的最优投资策略,最大化终止盈余的均值,同时最小化终止盈余的方差。【方法】应用推广的Hamilton-Jacobi-Bellman动态规划的方法研究了该问题。【结果】得到了时间一致最优投资策略和值函数的显式解。【结论】所得结果推广了时间一致策略选择问题中已有文献中的相应结论。
[Purposes]When the risky asset'price is governed by ajump-diffusion process while the liability evolves according to a Brownian motion with drift,the objective is to choose an optimal time-consistent investment strategy so as to maximize the expected terminal surplus while minimizing the variance of the terminal surplus.[Methods]The problem is investigated by using the extended Hamilton-Jacobi-Bellman dynamic programming approach.[Findings]Closed-form solutions for the optimal investment strategy and the corresponding value functions are obtained.[Conclusions]The obtained results extend the corresponding conclusions in references on time consistent strategy selection problems.
作者
杨鹏
YANG Peng(School of Science,Xijing University,Xi'an 710123,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期74-80,共7页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金面上项目(No.11271375)
西京学院院科研基金(No.XJ160144)