期刊文献+

非线性耦合Schrdinger-KdV方程组的一个局部能量守恒格式 被引量:2

A LOCAL ENERGY CONSERVATIVE SCHEME FOR NONLINEAR COUPLED SCHRDINGER-KDV EQUATIONS
原文传递
导出
摘要 本文利用平均值离散梯度给出了一个构造哈密尔顿偏微分方程的局部能量守恒格式的系统方法.并用非线性耦合Schrodinger-KdV方程组加以说明.证明了格式满足离散的局部能量守恒律,在周期边界条件下,格式也保持离散整体能量及系统的其它两个不变量.最后数值实验验证了理论结果的正确性. In this paper, by using the mean value discrete gradient, we give a systematic method to construct a local energy conservative scheme for Hamiltonian PDEs. This method is illustrated by nonlinear coupled SchrSdinger-KdV equations. We prove that the scheme satisfies the discrete local energy conservation law, with the periodic boundary conditions, the scheme also conserves the discrete global energy and other two invariants. Finally, Numerical experiments are presented to verify the accuracy of theoretical results.
作者 郭峰 Guo Feng(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
出处 《计算数学》 CSCD 北大核心 2018年第3期313-324,共12页 Mathematica Numerica Sinica
关键词 耦合Schr dinger—KdV方程组 局部能量守恒律 平均值离散梯度 coupled Schodinger-KdV equations local enery conservation law the mean value discrete gradient
  • 相关文献

参考文献4

二级参考文献30

  • 1WANG Yushun, WANG Bin & QIN MengzhaoLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China,School of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, China.Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation[J].Science China Mathematics,2004,47(1):18-30. 被引量:17
  • 2李延欣,丁培柱,吴承埙,金明星.A_2B模型分子经典轨迹的辛算法计算[J].高等学校化学学报,1994,15(8):1181-1186. 被引量:14
  • 3刘林,廖新浩,赵长印,王昌彬.辛算法在动力天文中的应用(Ⅲ)[J].天文学报,1994,35(1):51-66. 被引量:14
  • 4Feng K. On difference schemes and symplectic geometry [ A]. In feng K, ed. Proc 1984 Beijing syrmp diff geomety and diff equations.Beijing: Science press, 1985,42 - 58.
  • 5Shang Z J. Construction of volume preserving difference schemes for sour-free system voa generating function [ J]. J Comput Math,1994b, 12:265 - 272.
  • 6石钟慈,等.冯康文集[M].国防工业出版社,1995.
  • 7Feng K, Wu H M, Qin M Z, Wang D L. Construction of canonical difference schemes for Hamihonian formalism via generating functions [J] .Jour Comp Math, 1989,7( 1 ) :71 - 96.
  • 8Sanz-Serna J M, Calvo M P. Numerical Hamiltonian System [ M]. London: Chapman, 1994.
  • 9Yoshida H. Construction of higher order symplectic integrators [J]. Phys Lett A, 1990 ,150 : 262 - 269.
  • 10Qin M Z,Zhu W J. Construction of higher order symplectic schemes by compositions [J]. Computing, 1992,47:309 - 321.

共引文献29

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部