摘要
荷电状态(State-of-Charge,SOC)估计作为电池管理系统的核心算法,是电池状态估计与保护控制的重要依据。基于改进PNGV模型,应用带有遗忘因子的递推最小二乘算法实现电池模型参数实时更新;在此基础上,提出了将粒子滤波与卡尔曼滤波相结合的SOC二次滤波算法,结合系统状态方程对粒子滤波结果进行卡尔曼二次滤波,从而在计算量接近粒子滤波的前提下提高估计精度,克服了拓展卡尔曼滤波算法必须对实际工况进行线性化,以及粒子滤波算法在信噪比较低时粒子不能准确描述后验概率而导致结果偏移的问题。通过电池实验仿真验证了模型参数识别以及SOC估计算法的优越性。
As the core algorithm of battery management system,the estimation of SOC is an important basis for battery state estimation and system's protection and control. Based on the improved PNGV model,this paper uses the forgetting-factor recursive least square method to update the battery model parameters in real time. On this basis,the SOC dual filter algorithm is proposed which combined the PF and KF. It performs Kalman filtering after particle filtering to realize accuracy SOC estimation. The dual filter algorithm solves the problem of nonlinear error of EKF and the problem of result migration of PF in the case of low SNR. Finally,the superiority of battery model parameters and SOC estimation algorithm are verified through battery experiment and simulation.
作者
邢云凤
赵野
Xing Yunteng1,2,3, Zhao Ye2(1. Automotive Electronics Center, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China ; 2. Research & Development Center for Internet of Things Chinese Academy of Sciences, Wuxi 214135, China; 3. University of Chinese Academy of Sciences, Beijing 100049, Chin)
出处
《信息技术与网络安全》
2018年第6期59-63,共5页
Information Technology and Network Security
基金
国家重点研发计划"新能源汽车专项"(2016YFB0100516)
关键词
荷电状态
改进PNGV模型
遗忘因子递推最小二乘
粒子滤波
卡尔曼滤波
二次滤波
State of Charge (SOC)
improved PNGV model
forgetting-factor recursive least square method
particle filter
Kahnan filter
dual filter