期刊文献+

风车型低频压电振动能量采集器的研究与设计 被引量:4

Research and Design of Low-frequency Piezoelectric Vibration Energy Harvester With Windmill Structure
下载PDF
导出
摘要 基于微机电系统(MEMS)设计了风车型结构的压电振动能量采集器,通过压电效应将低频振动能量转化为电能,用以解决环境中低频能量采集的问题。风车型结构的压电振动能量采集器以硅为基底,以PZT-5A为压电材料,包含上、下电极;4条悬臂梁旋转连接中心质量块与四周固定端,类似于风车结构。数学建模与有限元仿真分析表明,在结构尺寸与材料相同的情况下,圆弧风车型结构的谐振频率较直接连接、直角连接结构的谐振频率更低;4条悬臂梁距离中心质量块越远,谐振频率越低;在0.1g(g=9.8m/s^2)加速度谐振状态下,输出电压约为6.2V,最大位移接近1.2mm。基于MEMS工艺,通过IntelliSuite软件研究和定义了风车型振动能量采集器的工艺流程。 A piezoelectric vibration energy harvester with windmill structure is designed based on MEMS. The low frequency vibration energy is converted into electric energy by piezoelectric effect, so as to solve the problem of low frequency energy acquisition in the environment. The piezoelectric vibration energy harvester uses silicon as the substrate, with PZT-5A as piezoelectric material, including upper and lower electrodes; four cantilever beams are rotated to connect the center mass blocks with fixed ends around, which is similar to the windmill structure. The results of mathematical modeling and finite element analysis indicate that under the same sizes and materials of the structure, the arc windmill type structure has lower resonant frequency than the direct connection and the right angle connection structure. The farther the 4 cantilever beams are from the center mass, the lower the resonant frequency. At 0.1 g(g =9.8 m/s^2) acceleration resonant, the output voltage is about 6.2 V, and the maximum displacement is close to 1.2 mm. On the basis of MEMS process, the process flow of windmill vibration energy harvester is studied and defined by IntelliSuite software.
作者 梁光胜 李艺 LIANG Guangsheng;LI Yi(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
出处 《压电与声光》 CAS CSCD 北大核心 2018年第3期423-427,共5页 Piezoelectrics & Acoustooptics
关键词 低频振动 能量采集 风车型结构 IntelliSuite软件 微机电系统(MEMS)工艺 low frequency vibration energy harvesting windmill structure IntelliSuite software MEMS process
  • 相关文献

参考文献5

二级参考文献36

  • 1刘延柱 陈文良 陈立群.振动力学[M].北京:高等教育出版社,2000..
  • 2Fang Hua-Bin,Liu Jing-Quan,Xu Zheng-Yi,Dong Lu,Wang Li,Chen Di,Cai Bing-Chu,Liu Yue.Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting[J].Microelectronics Journal.2006,37:1280-1284.
  • 3Heng Zeng,Carla S.Ellis,Alvin R.Lebeck,Energy Harvesting and Conservation[J].IEEE pervasive computing,2005,4(1):14-16.
  • 4Glyne-Jones P,White N M.Self-Powered Systems:A Review of Energy Sources[J].Sensor Review,2001,21(2):91-97.
  • 5Shearwood S,Yates R B.Development of an Electro-magnetic Micro-Generator[J].Electron.Litt.Oct.1997,33:1833-1884.
  • 6Beeby S P,Tudor M J,White N M.Energy Harvesting Vibration Sources for Microsystems Applications,Measurement Science and Technology[J].2006,17:175-195.
  • 7JAMBUNATHAN M,ELFRINK R,VULLERS R,et al..Pulsed laser deposited-PZT based MEMS energy harvesting devices[C].Applica tions of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 lnternational Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM),Aveiro:IEEE,2012:1-4.
  • 8KIM S-G,PRIYA S,KANNO I.Piezoelectric MEMS for energy harvesting[J].MRS Bulletin,2012,37(11):1039-1050.
  • 9KIMS-H,LEUNG A,KO(OCY.Lead-free(Na0.5K0.5) (Nb0.95Ta0.05) O3-BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices[J].Materials Letters,2012,69(11):24-26.
  • 10XU R,LEI A,DAH PETERSEN C.Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting[J].Sensors and Actuators A:Physical,2012,188 (11):383-388.

共引文献29

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部