期刊文献+

离散社会群体优化算法求解旅行商问题 被引量:3

A Discrete Social Group Optimization for TSP
下载PDF
导出
摘要 社会群体优化算法(SGO)已经应用在求解连续域问题上,而在离散优化问题上的应用还相对较少。本文首先介绍了旅行商问题(TSP)和社会群体优化算法的原理,然后根据旅行商问题和离散量的特点对SGO算法的运算规则进行了重新定义。在SGO算法的提高和获得阶段分别引入交叉、变异操作,有效地增加了种群的多样性,减小了算法陷入局部最优的可能,从而提高了算法的全局收敛速度。在标准TSP测试数据下进行了相关实验,实验结果表明利用社会群体优化算法求解旅行商问题能取得较好的结果。 The social group optimization algorithm( SGO) has been applied to solve the continuous domain problem,but the application on the discrete optimization problem is relatively few. In this paper,the principle of traveling salesman problem( TSP) and social group optimization algorithm is introduced,and the operation rules of the SGO algorithm are redefined according to the traveling salesman problem and the characteristics of the discrete quantity. In the improvement and acquisition stage of SGO algorithm,crossover and mutation operations are introduced respectively,which effectively increases the diversity of population and reduces the possibility of algorithm falling into local optimum,so that the global convergence speed of the algorithm is improved. The experimental results are carried out under the standard traveling salesman problem test data,the results show that the social group optimization algorithm can achieve better results in solving the traveling salesman problem.
作者 刘亚军 陈得宝 邹锋 王苏霞 吴乐会 LIU Ya-jun;CHEN De-bao;ZOU Feng;WANG Su-xia;WU Le-hui(School of Physics and Electronic h~bnnation,Huaibei Normal University,Huaibei Anhui 235000,China)
出处 《长春师范大学学报》 2018年第6期91-95,共5页 Journal of Changchun Normal University
基金 国家自然科学基金项目"模糊动态多目标优化及在演化数据聚类中的应用研究"(61572224) 安徽省高校自然科学研究重大项目"动态多目标教学优化及在数据聚类中的应用研究"(KJ2015ZD36) 安徽省自然科学基金项目"离散教学多目标优化及在个性化推荐中的应用研究"(1708085MF140)
关键词 社会群体优化算法 旅行商问题 离散优化 交叉 变异 social group optimization traveling salesman problem discrete optimization crossover mutation
  • 相关文献

参考文献3

二级参考文献33

  • 1王湘中,喻寿益,贺素良,夏利锋.一种强引导进化型遗传算法[J].控制与决策,2004,19(7):795-798. 被引量:13
  • 2吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 3马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法[J].系统仿真学报,2006,18(11):3297-3300. 被引量:18
  • 4Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium Indianapolis. Indianapdis, USA" [s. n. ], 2006:651 - 656.
  • 5Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007 (10) : 1016 - 1025.
  • 6Von Frisch K. The dance language and orientation of bees[M]. Boston, Massachusetts, USA.. The Belknap Press of Harvard University Press, 1967.
  • 7Abbass H A. Arriage in honey-bee optimization (MBO) : a haplometrosis polygynous swarming approach [C]//Proceedings of The Congress on Evolutionary Computation (CEC2001). Seoul, Korea: [s. n. ], 2001:207 - 214.
  • 8Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2002.
  • 9Afshar A, Bozog H O, Marino M A. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation [J]. Journal of the Franklin Institute, 2007,344: 452 - 462.
  • 10Haddad O B, Afshar A, Marino M A. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization[J]. Water Resources Management, 2006,20 : 661 - 680.

共引文献92

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部