摘要
处理了新Neumann边界条件下和带有反应项的非局部扩散的爆破问题。证明了问题解存在的唯一性,建立了比较原理。得到问题解的临界指标p*=1,当且仅当p>1时,非负非平凡的解在有限时刻爆破;反之,当p≤1时,每个解都是全局存在的。
The blow-up problem of the nonlocal diffusion system with new Neumann boundary and a reaction term is solved.We prove that the solution is unique,and build up a comparison principle.In addition,the critical exponent of solution p*=1 is obtained.The non-negative and non-trivial solution blows up in a fixed time if and only if p1,while every solution is global if p≤1.
作者
张敏华
ZHANG Minhua(Department of Basic Teaching and Research,Yango University,Fuzhou 350015,China)
出处
《长春工业大学学报》
CAS
2018年第3期301-305,共5页
Journal of Changchun University of Technology
基金
福建省中青年教师教育科研资助项目(JAT170781)