期刊文献+

Neumann边界条件下非局部扩散方程解的爆破

Blow-up of solutions for a nonlocal diffusion system with Neumann boundary
下载PDF
导出
摘要 处理了新Neumann边界条件下和带有反应项的非局部扩散的爆破问题。证明了问题解存在的唯一性,建立了比较原理。得到问题解的临界指标p*=1,当且仅当p>1时,非负非平凡的解在有限时刻爆破;反之,当p≤1时,每个解都是全局存在的。 The blow-up problem of the nonlocal diffusion system with new Neumann boundary and a reaction term is solved.We prove that the solution is unique,and build up a comparison principle.In addition,the critical exponent of solution p*=1 is obtained.The non-negative and non-trivial solution blows up in a fixed time if and only if p1,while every solution is global if p≤1.
作者 张敏华 ZHANG Minhua(Department of Basic Teaching and Research,Yango University,Fuzhou 350015,China)
出处 《长春工业大学学报》 CAS 2018年第3期301-305,共5页 Journal of Changchun University of Technology
基金 福建省中青年教师教育科研资助项目(JAT170781)
关键词 反应项 非局部扩散 NEUMANN边界条件 全局存在 爆破 reaction term nonlocal diffusion Neumann boundary conditiom global existence blow up
  • 相关文献

参考文献2

二级参考文献27

  • 1Qi Y W. The critical exponents of parabolic equations and blow-up in RN. Proc Roy Soc Edinburgh Sect A, 1998, 128:123 -136.
  • 2Galaktionov V A. Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124:517- 525.
  • 3Galaktionov V A, Kurdyumov S P, Mikhailov A P, et al. Unbounded solutions of the Cauchy problem for the parabolic equation ut = V(u^△Vu) + u^β. Soviet Phys Dokl, 1980, 25:458 -459.
  • 4Mochizuki K, Mukai K. Existence and nonexistence of global solutions to fast diffusions with source. Methods Appl Anal, 1995, 2:92-102.
  • 5Qi Y W. On the equation ut = Au^α + w^β. Proc Roy Soc Edinburgh Sect A, 1993, 123:373- 390.
  • 6Qi Y W. The critical exponents of degenerate parabolic equations. Sci China Ser A, 1994, 38:1153- 1162.
  • 7Guo J S, Guo Y J. On a fast diffusion equation with source. Tohoku Math J, 2001, 53:571 -579.
  • 8Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal, 2000, 39:33 -45.
  • 9Gui C, Wang X. Life span of solutions of the Cauchy problem for a semi-linear heat equation. J Differential Equations, 1995, 115:166 -172.
  • 10Huang Q, Mochizuki K, Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math J, 1998, 27:393 -407.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部