期刊文献+

两个幂等矩阵组合的群逆

Two combinations of group inverse idempotent matrix
下载PDF
导出
摘要 证明了两个不同的非零幂等矩阵P,Q的组合A=a P+b Q+c PQ+d QP(其中a,b,c,d∈■,a,b≠0),在条件(PQ)n=(QP)n(n≥1,n∈Z)下存在群逆,并且给出其群逆计算公式. The group inverse of combinations A = a P + b Q + c PQ + d QP,of two nonzero different idempotent matrices P and Q under the condition( PQ)~n=( QP)~n is proved,where a,b,c,d ∈ ,a,b ≠ 0. The formulae of its group inverse is also presented.
作者 曹秋红 谢涛 CAO Qiu-hong;XIE Tao(College of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)
出处 《湖北师范大学学报(自然科学版)》 2018年第2期53-59,共7页 Journal of Hubei Normal University:Natural Science
基金 湖北师范大学研究生科研创新项目(批准号:20170116) 湖北教育厅青年项目(批准号:B2017149)
关键词 幂等矩阵 线性组合 群逆 idempotent matrices linear combinations group inverses
  • 相关文献

参考文献4

二级参考文献15

  • 1程云鹏.矩阵论[M].西安:西北工业大学出版社,2001..
  • 2Juha Heiskala and John Terry. OFDM Wireless LANs: A Theoretical and Practical Guide [ M ]. Published by Pearson Education, Inc. Publishing as Sams. Copyright ( c), 2002.
  • 3Rabanovic V. Every matrix is a linear combination of three idempotents[J]. Linear Algebra Appl, 2004, 390:137-143.
  • 4Pearcy C,Topping D. Sums of small numbers of iclempotents [J]. Michigan J Math, 1967, 14:453-465.
  • 5Fillmore P A. On sums of projections[J]. J Funct Anal, 1969, 4:146-152.
  • 6Wu P Y. Sums of idempotent matrices[J]. Linear Algebra Appl, 1990, 142:43-54.
  • 7Wu P Y. Additive combinations of special operations[J]. Functional Analysis and Operator Theorem, 1994, 30: 337-361.
  • 8Baksalary J K, Baksalary O M. Nonsingularity of linear com- binations of idempotent matrices[J]. Linear Algebra Appl, 2004, 358:25-29.
  • 9Koliha J J, Rakocevic V, Straskraba I. The nullity and rank of linear combinations of idempotent matrices[J]. Linear Al- gebra Appl, 2006, 41g : 11-14.
  • 10Du H K, Yao X, Deng C. Invertibility of linear combinations of two idempotents[J]. Pro Amer Math Soc, 2006, 134: 1451-1457.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部