期刊文献+

基于实时控制分配策略的航天器姿态跟踪 被引量:3

Spacecraft Attitude Tracking Based on Real Time Control Allocation Strategy
下载PDF
导出
摘要 针对含有冗余执行器的航天器姿态跟踪控制系统,首先将故障观测器得到的执行器部分失效因子估计矩阵的逆作为权值矩阵,改进了开环伪逆控制技术,并进一步考虑执行器饱和以及响应速率约束,设计了基于向量二次最优规划的开环动态控制分配方案。考虑到执行器安装矩阵偏差会导致开环实时控制分配策略方案产生的执行器实际力矩与控制器期望力矩误差,设计了实时控制分配策略的系统结构,并给出了实时控制分配策略系统稳定的一个充分条件。最后,通过MATLAB仿真实验,从结果中看出在保证实时控制分配策略系统角速度误差和姿态四元数误差快速收敛的同时,各执行器的输出力矩均能满足输入饱和受限及响应速率约束,验证了本文设计的实时控制分配策略方案的有效性和可靠性。 As for spacecraft attitude tracking system with redundant actuators,this paper improves the traditional pseudo-inverse control allocation by using the inverse matrix of actuator partial loss effectiveness estimation matrix as weigh matrix. Taken further actuator saturation and output velocity constrains into consideration,this paper proposes an open loop dynamic control allocation based on vector quadratic optimal planning. The deviation of actuator installation matrix may result in error between actual moments generated by open loop control allocation with expected moments provided by the virtual controller. This paper proposes a closed loop control allocation,and provides a sufficient condition of stability. Finally,with MATLAB simulation,it can be found from the experiments results that the angular velocity error and attitude quaternion error of closed loop control allocation system will achieve convergence in a rapid speed.Meanwhile,the output torque of every actuator could satisfy the input saturation and the response rate constraints. Thus,the effectiveness and reliability of closed loop control allocation strategy are demonstrated.
作者 郭颢萌 GUO Hao-meng(Nanjing University of Science & Technology,Nanjing ,Jiangsu 210094, China)
机构地区 南京理工大学
出处 《计算技术与自动化》 2018年第2期6-11,54,共7页 Computing Technology and Automation
关键词 航天器 姿态跟踪控制 控制分配 执行器部分失效 冗余执行器 spacecraft attitude tracking control control allocation actuator partial failure redundant actuators
  • 相关文献

参考文献1

二级参考文献15

  • 1杨恩泉,高金源.先进战斗机控制分配方法研究进展[J].飞行力学,2005,23(3):1-4. 被引量:33
  • 2Hanspeter S. Locally power-optimal spacecraft attitude control for redundant reaction wheel cluster[C]//Proceed- ings of the AIAA/AAS Astrodynamics Specialist Confer- ence. 2008: 1-11.
  • 3Landis M F, Reynolds R G, Liu F X, et al. Maximum torque and momentum envelopes for reaction wheel arrays [J]. Journal of Guidance, Control and Dynamics, 2010, 33(5): 1606-1614.
  • 4Harkegfird O. Backstepping and control allocation with applications to flight control[D]. Linkoping: Department of Electrical Engineering, Linkoping University, 2003.
  • 5Bodson M, Frost S A. Control allocation with load balan- cing[C]//AIAA Guidance, Navigation, and Control Con ference. 2009.
  • 6Michael A B, David B D. Nonlinear control allocation using piecewise linear functions: a linear programming approach[J]. Journal of Guidance, Control, and Dynam- ics, 2005, 28(3): 558-562.
  • 7Michael A B, David B D. Nonlinear control allocation u- sing piecewise linear functions[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1017-1027.
  • 8Queen E M, Silverberg L. Optimal control of a rigid body with dissimilar actuators[J]. Journal of Guidance, Con- trol, and Dynamics, 1996, 19(3): 738-740.
  • 9Hall C D , Tsiotras P, Shen H J. Tracking rigid body mo- tion using thrusters and momentum wheels[J]. Journal of the Astronautical Sciences, 2002, 50(3): 311-323.
  • 10Yoonhyuk C, Hyochoong B, Hyunjae L. Dynamic control allocation for shaping spacecraft attitude control command [R]. AIAA2006 6040, 2006.

共引文献11

同被引文献34

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部