期刊文献+

CL-20及其共晶炸药热力学稳定性与爆轰性能的理论研究 被引量:6

Theoretical Studyon Thermodynamic Stabilityand Detonation Performance of CL-20 and Its Cocrystal
下载PDF
导出
摘要 基于自主研发的第一性原理软件研究了六硝基六氮杂异伍兹烷(CL-20)炸药五种晶相、苯并三氧化呋咱(BTF)炸药晶体及CL-20/BTF共晶炸药结构的热力学稳定性、力学性能和爆轰性能。研究表明,弱氢键的静电吸引作用使CL-20/BTF共晶的分子间结合能相对于无氢BTF晶体增加39%,提升了共晶结构的热力学稳定性并较大地改变了其体弹模量和声速等力学性能。CL-20/BTF共晶虽与纯BTF晶体有相近的密度,但由于共晶的氧平衡系数得到优化,因此其爆压、爆速分别相对提高约11%、5%;与β-CL-20晶体相比,共晶的密度与氧平衡均有所下降,因而其爆压、爆速分别相对下降约15%、6%。设计新型钝感共晶炸药应避免共价键强度极弱的分子和具有高密度振动谱特征峰的结构,应有效利用氢键对分子空间堆积的热力学稳定效应,同时适量控制氢元素含量以保障炸药的高能量密度。 Based on the first-principle software developed by ourselves,the thermodynamic stability,mechanical properties,and detonation performances of structure for hexanitrohexaazaisowurtzitane(CL-20)explosive with five crystallline phase,benzotrifuroxane(BTF)crystal explosive and CL-20/BTF cocrystal explosive were studied.Results show that the electrostatic attraction effect of weak hydrogen bonds makes the intermolecular binding energy of CL-20/BTF cocrystal increase by 39% compared with that of hydrogen-free BTF crystal,which improves thermodynamic stability of cocrystal structure and significantly changes its mechanical properties,such as bulk modulus and sound speed etc.Although the BTF/CL-20 cocrystal and pure BTF crystal have the similar density,but due to the oxygen balance coefficient of the cocrystal has been optimized,so its detonation velocity and detonation pressure are improved by about 11% and 5%,respectively.Compared with theβ-CL-20 crystal,the density and oxygen balance of the cocrystal are decreased,the detonation pressure and detonation velocity relatively decrease by about 15% and 6%,respectively.Design of a new type of insensitive cocrystal explosive should avoid the molecule with extremely weak strength covalent bonds and structure with characteristic peaks of high density vibration spectrum,thermodynamic stability effect of hydrogen bond on the molecular space packing should be effectively used,and the hydrogen element content should be moderately controlled to protect the high energy density of explosives.
作者 张蕾 赵艳红 姜胜利 余一 王星 赵寒月 李重阳 陈军 ZHANG Lei 1 , ZHAO Yan-hong 2 , JIANG Sheng-li 1 , YU Yi 1 , WANG Xing 1 , ZHAO Han-yue 1 , LI Chong-yang 3 ,CHEN Jun 1,2(1. CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China; 2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3. School of Materials Science and Engneering, Xiangtan University, Xiangtan 411105, Chin)
出处 《含能材料》 EI CAS CSCD 北大核心 2018年第6期464-470,共7页 Chinese Journal of Energetic Materials
基金 国家自然科学基金(11604017) 国防基础科研核科学挑战专题(TZZT2017-D2-HT013J) 国家重点研发计划(2017YFB0202403)
关键词 六硝基六氮杂异伍兹烷(CL-20) 共晶 分子相互作用 宏观物性 爆轰性能 hexanitrohexaazaisowurtzitane(CL-20) cocrystal molecular interaction macroscopic physical properties detonation performance
  • 相关文献

参考文献2

二级参考文献28

  • 1李德华,杨缤维,程新路,杨向东.液H_2O冲击压缩特性的理论计算[J].四川大学学报(自然科学版),2005,42(1):108-111. 被引量:6
  • 2刘海风,陈栋泉,张世泽.爆轰产物物态方程及CHBr_3相变的理论研究[J].高压物理学报,1996,10(4):284-290. 被引量:8
  • 3Chirat R,Pittion-Rossillon G 1981 J.Chem.Phys.74 4634.
  • 4Mader C L 1979 Numerical Modeling of Detonation (Berkeley,Los Angeles,London:University of California Press).
  • 5Fickett W,Davis W C 1979 Detonation (Berkeley,Los Angeles,London:University of California Press).
  • 6Andersen H C,Weeks J D,Chandler D 1971 Phys.Rev.A 4 1597.
  • 7Ree F H 1976 J.Chem.Phys.64 4601.
  • 8Ross M 1979 J.Chem.Phys.71 1567.
  • 9White W B,Johnson S M 1958 J.Chem.Phys.28 751.
  • 10Ree F H 1983 J.Chem.Phys.78 409.

共引文献13

同被引文献52

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部