摘要
应用动力系统分岔理论研究一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔,根据分岔参数的不同值得到非线性变换系统的相图.通过计算得到(3+1)维非线性Jaulent-Miodek分层发展方程的精确行波解,包括周期波解、孤立波解、扭波解及反扭波解.
We study bifurcation of traveling wave solutions of a class of (3+1)-dimensional nonlinear evolution equations generated by the Jaulent-Miodek hierarchy. We obtain phase portraits of the nonlin- ear transformation system according to the different bifurcation regions of parameters. Different kinds of traveling wave solutions, such as the periodic wave solutions, solitary wave solutions, kink wave so- lutions and anti-kink wave solutions axe found to exist under certain parameter conditions, and the exact solutions of traveling waves are obtained.
作者
何斌
赵立通
李静
田征
He Bin;Zhao Litong;Li Jing*;Tian Zheng(College of Applied Sciences,Beijing University of Technology,Beijing 100124,China)
出处
《上海师范大学学报(自然科学版)》
2018年第3期305-314,共10页
Journal of Shanghai Normal University(Natural Sciences)
基金
The Natural Science Foundation of China(11772007,11372014,11072007,11290152,11072008)
Beijing Natural Science Foundation(1172002,1122001)
关键词
(3+1)维非线性发展方程
分岔
行波解
精确解
(3+1)-dimensional nonlinear evolution equation
bifurcation
traveling wave solution
exact solution