期刊文献+

Modeling the effects of rainfall on vehicular traffic 被引量:1

Modeling the effects of rainfall on vehicular traffic
下载PDF
导出
摘要 Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic management and poor drainage system. The main objective of the study is to model the interdisciplinary issues of storm water and its effect on the traffic of Karachi. The specific objectives are (1) to calibrate and validate urban hydraulic and traffic micro-simulation models and (2) to model storm water and traffic for future conditions. This study is carried out on a 3-km section of arterial road. In this study, loose coupling of two models is done. For urban drainage, PCSWMM, and for traffic, VISSIM is used. Both models are calibrated for an existing situation on rainfall event of August 3, 2013, and then used for prediction of future scenario based on 50-year and 100-year return periods of rainfall. Sensitivity analysis of VISSIM is performed. Locations and lengths of road sections, where ponding happens for the future scenario, are identified using PCSWMM. These lengths axe then marked in VISSIM as low-speed areas, and delays are measured. Analysis of PCSWMM shows that for 100-year return period, there is maximum 0.318 ha-m (3180 cubic meters) water stored in the depressions of the road after 10 h of rainfall. Analysis of VISSIM shows that for a 100-year return period, there is a maximum delay of 35 min on NIPA to Hasan Square section of University Road. Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic management and poor drainage system. The main objective of the study is to model the interdisciplinary issues of storm water and its effect on the traffic of Karachi. The specific objectives are (1) to calibrate and validate urban hydraulic and traffic micro-simulation models and (2) to model storm water and traffic for future conditions. This study is carried out on a 3-km section of arterial road. In this study, loose coupling of two models is done. For urban drainage, PCSWMM, and for traffic, VISSIM is used. Both models are calibrated for an existing situation on rainfall event of August 3, 2013, and then used for prediction of future scenario based on 50-year and 100-year return periods of rainfall. Sensitivity analysis of VISSIM is performed. Locations and lengths of road sections, where ponding happens for the future scenario, are identified using PCSWMM. These lengths axe then marked in VISSIM as low-speed areas, and delays are measured. Analysis of PCSWMM shows that for 100-year return period, there is maximum 0.318 ha-m (3180 cubic meters) water stored in the depressions of the road after 10 h of rainfall. Analysis of VISSIM shows that for a 100-year return period, there is a maximum delay of 35 min on NIPA to Hasan Square section of University Road.
出处 《Journal of Modern Transportation》 2018年第2期133-146,共14页 现代交通学报(英文版)
关键词 Traffic micro-simulation Hydraulic modeling RAINFALL DELAYS PONDING Traffic micro-simulation Hydraulic modeling Rainfall Delays Ponding
  • 相关文献

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部