期刊文献+

复杂障碍空间中基于移动对象运动规律的不确定轨迹预测 被引量:1

Prediction of Uncertain Trajectory Based on Moving Object Motion in Complex Obstacle Space
下载PDF
导出
摘要 现有移动对象的轨迹预测大部分是针对路网空间,然而在实际地理环境中往往存在障碍物,移动对象的运动基本在障碍空间中进行。近年来,已有较多关于路网空间中移动对象轨迹预测的研究以及障碍空间中障碍范围查询、最近邻查询等的研究,但是目前尚没有障碍空间中移动对象不确定轨迹预测的相关研究。为此,提出障碍空间中基于移动对象运动规律的不确定轨迹预测方法。首先,利用障碍物之间的区域关系对障碍空间进行剪枝;其次,提出障碍空间期望距离概念,对障碍空间的轨迹数据进行轨迹聚类,从而挖掘移动对象的热点区域;然后,根据各热点区域间的障碍距离和历史访问习惯得到转移的综合概率,提出基于移动对象运动规律的轨迹预测算法;最后,通过实验验证了算法的准确性和高效性。 Most of the existing moving objects trajectory prediction is in the road network space,however,in the actual geographical environment,there exists obstacles,the movement of moving objects is basically carried out in the obstacle space.In recent years,there have been many studies on moving object trajectory prediction in road network space,such as obstacle range query,nearest neighbor query and so on.However,there is no research on the uncertain trajectory prediction of moving objects in obstacle space.For this reason,this paper proposed an uncertain trajectory prediction algorithm based on moving object motion in obstacle space.Firstly,the obstacle space was pruned by using the regional relation among obstacles.Secondly,the concept of obstacle space expectation distance was proposed,and the trajectory data of obstacle space is clustered,thereby excavating the moving object hot spot region.Next,according to the obstacle distance and the historical visiting habit of each hotspot region,a Markov trajectory prediction algorithm based on the motion law was proposed.Finally,the accuracy and efficiency of the algorithm were verified by experiments.
作者 宫海彦 耿生玲 GONG Hai-yan1,GENG Sheng- ling1,2(1School of Computer, Qinghai Normal University, Xining 810008, China;2Key Laboratory of loT of Qinghai Province, Qinghai Normal University, Xining 810008,Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期130-134,共5页 Computer Science
基金 国家自然科学基金项目(61261047 61403290) 国家社科项目(15XMZ057) 青海省自然基金项目(2014-ZJ-908 2016-ZJ-920Q) 青海省重大研发项目(2016-SF-130) 青海省物联网重点实验室建设专项(2017-ZJ-Y21)资助
关键词 障碍空间 移动对象 运动规律 不确定轨迹预测 Obstacle space Moving object Pattern of motion Uncertain trajectory prediction
  • 相关文献

参考文献4

二级参考文献47

  • 1邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1987..
  • 2TRAJCEVSKI c WOLFSON O, HINRICHS K, et ai. Managing uncertainty in moving objects databases[J]. ACM Transactions on Database Systems, 2004, 29(3): 463-507.
  • 3MORZY M. Mining frequent trajectories of moving objects for location prediction[C]//Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition. Berling: Springer, LNCS 4571, 2007: 667-680.
  • 4TRAJCEVSKI TAMASSIA R, DING H, et al. Continuous probabilistic nearest-neighbor queries for uncertain trajectories [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. New York: ACM, 2009: 874-885.
  • 5QIAO Shao-jie, TANG Chang-jie, JIN Hui-dong, et al. PutMode: Prediction of uncertain trajectories in moving objects databases[J]. Applied Intelligence, 2010, 33(3): 370-386.
  • 6GIANNOTTI F, NANNI M, PEDRESCHI D. Efficient mining of temporally annotated sequences[C]//Proceedings of the 6th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2006: 346-35%.
  • 7GIAqN O-'i --F, NANNI'- ----- M, PINELLI F, et al. Trajectory pattern mining[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 330-339.
  • 8MAMOULIS N, CAO H, KOLLIOS G, et al. Mining, indexing, and querying historical spatiotemporal data[C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004: 236-245.
  • 9MOKHTAR H M O, SU J. Universal trajectory queries for moving object databases[C]//Proceedings of the 2004 IEEE International Conference on Mobile Data Management. Washington: IEEE Computer Society, 2004: 133-144.
  • 10NODELMAN U, SHELTON C R, KOLLER D. Learning continuous time Bayesian networks[C]//Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 2003:451-458.

共引文献137

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部