期刊文献+

基于预测的多特征融合Mean-Shift跟踪算法 被引量:2

Multi-feature Fusion Mean-Shift Tracking Algorithm Based on Prediction
下载PDF
导出
摘要 视频监控在生活中的应用已经相当广泛,其中视频目标精确跟踪是计算机视觉中应用较广、难度较大的一部分。在实际视频场景中目标存在复杂的变化,如外形变化、部分遮挡、光照变化等,这对Mean-Shift跟踪算法产生了较大的影响。为了解决上述变化导致的跟踪不准确的问题,融合颜色和Gabor-LBP纹理特征进行Mean-Shift跟踪,并利用二次多项式预测运动目标的位置,以提高跟踪的准确度。 The application of video surveillance in life has been quite extensive,especially the main target tracking is widely used in daily life,and it is a difficult part in the computer vision.In the real video scene,there are many complex target appearance changes,such as partial occlusion,light changes,etc.These have a greater impact on the Mean-Shift tracking algorithm.In order to solve the problem of inaccurate tracking caused by the above complex environment,this paper fused the color and Gabor-LBP edge features in Mean-Shift tracking algorithm,and introduced the quadratic polynomial to predict the position of the video target,to improve the tracking accuracy.
作者 郭宇 郝晓燕 张兴忠 GUO Yu, HAO Xiao -yan ,ZHANG Xing- zhong(Taiyuan University of Technology, Taiyuan 030024, Chin)
机构地区 太原理工大学
出处 《计算机科学》 CSCD 北大核心 2018年第B06期171-173,205,共4页 Computer Science
基金 国网山西省电力公司科技项目(520530150015 5205301500W)资助
关键词 MEAN-SHIFT 特征融合 纹理特征 目标跟踪 二次多项式 Mean Shift Feature fusion Texture feature Object tracking Quadratic polynomial
  • 相关文献

参考文献4

二级参考文献66

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2000:142-149.
  • 4Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
  • 5Collins R T.Mean-shift blob tracking through scale space[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2003:234-241.
  • 6Birchfield S T,Rangarajan S.Spatiograms versus histograms for region-based tracking[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2005:1158-1163.
  • 7Zhao Qi,Tao Hai.Object tracking using color correlogram[C] //Proc of IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.Piscataway,NJ:IEEE,2005:263-270.
  • 8Yang C,Duraiswanu R,Davis L.Efficient mean-shift tracking via a new similarity measure[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2005:176-183.
  • 9Collins R T,Liu Yanxi,Leordeanu M.Online selection of discriminative tracking features[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 10Lin R S,Ross D,Lim J,et al.Adaptive discriminative generative model and its applications[C] //Proc of Conf on Neural Information Processing System.Cambridge,MA:MIT Press,2004:801-808.

共引文献100

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部