期刊文献+

基于图的高维数据分类Ratio Cut模型及其快速算法

Graph-based Ratio Cut Model for Classification of High-dimensional Data and Fast Algorithm
下载PDF
导出
摘要 数据分类是数据挖掘研究的重要内容,随着数据量以及数据维度的增加,对大规模、高维数据的处理成为关键问题。为提高数据分类的准确率,受计算机视觉中图像分割算法的启发,针对经典的Ratio Cut分类模型提出一种基于非局部算子的实现算法。引进拉格朗日乘子,建立新的能量泛函,并采用交替优化的策略来求解该能量泛函。数值实验表明,算法的准确率及计算效率与传统分类方法相比都有较大提高。 Data classification is an important part of data mining.With the increase of the amount of data and the dimension of data,the processing of large-scale and high-dimensional data becomes the key problem.In order to improve the accuracy of data classification,inspired by the image segmentation algorithm in computer vision,an algorithm based on nonlocal operator was proposed for the classic Ratio Cut classification model.A new energy functional is modeled by introducing Lagrange multipliers,and the energy functional is solved by the alternating optimization method.Numerical experiments show that the accuracy and computational efficiency of the proposed algorithm are greatly improved compared with the traditional classification method.
作者 郑世秀 潘振宽 徐知磊 ZHENG Shi -xiu1,2, PAN Zhen- kuan1, XU Zhi- lei1(1College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, China;2Business School, Qingdao U niversity, Qingdao, Shandong 266071, Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期202-205,共4页 Computer Science
基金 国家自然科学基金(61170106)资助
关键词 非局部方法 RATIO CUT 数据分类 Graph Nonlocal means Ratio Cut Data classification
  • 相关文献

参考文献1

二级参考文献25

  • 1陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 2周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建[J].计算机研究与发展,2005,42(7):1173-1178. 被引量:8
  • 3Morigi S, Sgallari F. 3D long bone reconstruction based on level sets. Computerized Medical, Imaging and Graphics, 2004, 28(7): 377 -390.
  • 4Drapaca C S, Cardenas V, Studholme C. Segmentation of tissue boundary evolution from brain MR image sequences using multi-phase level sets. Computer Vision and Image Understanding, 2005, 100(3): 312- 329.
  • 5Sekkati H, Mitiche A. Joint optical flow estimation, segmentation, and 3D interpretation with level sets. Computer Vision and Image Understanding, 2006, 103(2): 89 -100.
  • 6Osher S, Sethian J. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton Jaeobi for mulation. Journal of Computational Physics, 1988, 79 ( 1 ) : 12- 49.
  • 7Zhao H K, Chan T, Merriman B, Osher S. A variational level set approach to multiphase motion. Journal of Computational Physics, 1996, 127(1): 179-195.
  • 8Osher S, Paragios N. Geometric Level set Methods in Imaging, Vision, and Graphics. New York: Springer-Verlag, 2003.
  • 9Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision, 2007, 72(2): 195-215.
  • 10Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部