摘要
遥感图像分类是模式识别技术在遥感领域的具体应用,针对遥感图像处理中的分类问题,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的遥感图像分类方法,并针对单源特征无法提供有效信息的问题,设计了一种多源多特征融合的方法,将遥感图像的光谱特征、纹理特征、空间结构特征等按空间维度以向量或矩阵的形式进行有效融合,以此训练CNN模型。实验表明,多源多特征相融合能够加快模型收敛速度,有效提高遥感图像的分类精度;与其他分类方法相比,CNN能够取得更高的分类精度,获得更优的分类效果。
The classification of remote-sensing images is a specific application of pattern recognition technology in theremote-sensing domain. In this paper, we propose a method for the classification of remote-sensing images based onconvolutional neural networks (CNN). In addition, to address the difficulty of providing effective information regardinga single-source feature in convolutional neural networks, we propose a multi-source and multi-feature fusion method.We combine the spectral, texture, and spatial-structure features of remote-sensing images in the form of vectors ormatrices according to their spatial dimensions, and train the CNN model using these combined features. The experiment-al results show that multi-source and multi-feature fusion can effectively improve the model convergence speed andclassification accuracy, in comparison with traditional classification methods, and that the CNN method achieves higherclassification accuracy and classification effect.
作者
李亚飞
董红斌
LI Yafei;DONG Hongbin(College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)
出处
《智能系统学报》
CSCD
北大核心
2018年第4期550-556,共7页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金项目(61472095)
关键词
遥感图像
地物分类
卷积神经网络
特征融合
remote-sensing image
classification of land cover
convolutional neural networks
feature fusion