摘要
为提高手势识别中特征获取的有效性,本文提出空域特征与对偶树复小波变换特征相结合的融合特征,主要包括水平位置、竖直位置、长宽比、矩形度、Hu矩7个分量,及11维空域特征与对偶树复小波变换的16维特征进行融合后得到的27维特征。针对分类器优化算法,提出进行训练样本优选的最优距离–支持向量机(BD-SVM)分类方法。最后的实验结果表明,对"1~9"手势进行测试,当采用径向基核函数时,平均识别精度最高,为90.33%,平均识别时间为0.026 s,说明所提出的方法能够较好地进行静态手势识别,具有较高的训练速度和辨识精度。
To improve the validity of features obtained in gesture recognition, in this paper, we propose a fusion featurethat combines spatial and dual-tree complex wavelet transform features. These features mainly include seven compon-ents (horizontal position, vertical position, aspect ratio, rectangular degree, Hu moments, etc.) and 27 dimensional fea-tures, comprising 11 dimensional spatial features and 16 dimensional dual-tree complex wavelet transform features. Weemploy the optimal distance support vector machine (BD-SVM) classification method to optimize training samples forthe classifier optimization algorithm. The experimental results show that, in a test of gestures “1~9” using the RBF ker-nel function, the highest average recognition accuracy is 90.33% and the average recognition time is 0.026 s. These res-ults reveal that the proposed method demonstrates excellent static gesture recognition, a high training speed, and accur-acy in identification.
作者
贾鹤鸣
朱传旭
张森
杨泽文
何东旭
JIA Heming;ZHU Chuanxu;ZHANG Sen;YANG Zewen;HE Dongxu(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China;College of Automa-tion,Harbin Engineering University,Harbin 150001,China)
出处
《智能系统学报》
CSCD
北大核心
2018年第4期619-624,共6页
CAAI Transactions on Intelligent Systems
基金
中央高校基本科研业务费专项资金项目(2572014BB03)
国家自然科学基金项目(31470714
51609048)
黑龙江省研究生教育创新工程项目(JGXM_HLJ_2016014)
关键词
手势识别
空域特征
对偶树复小波
特征融合
分类器优化
BD-SVM
径向基核函数
静态测试
gesture recognition
spatial feature
dual-tree complex wavelet
feature fusion
classifier optimization
BD-SVM
radial basis kernel function
static test