期刊文献+

基于一维混合元胞自动机模型的汽车变厚度B柱设计 被引量:2

Design of automobile tailor rolled blank B-pillar based on one dimension hybrid cellular automata model
下载PDF
导出
摘要 为了将连续变厚度轧制工艺更好地应用于车身轻量化设计和耐撞性设计,针对连续变厚度轧制(TRB)B柱不同区域厚度分布的设计问题,提出一维混合元胞自动机(ODHCA)模型。建立变厚度B柱的ODHCA模型,提取元胞厚度作为设计变量,确定其局部更新规则;根据连续变厚度轧制工艺的特点定义设计区域的约束条件,确定ODHCA方法的迭代方式与收敛准则。结果表明:应用ODHCA方法,在等质量情况下,胸部、腹部、骨盆位置侵入量分别降低了8.8%、13.4%、14.6%;而在质量降低14.2%时,上述各部位的位置侵入量分别降低了5.8%、9.6%、10.3%。因而,该方法可以改善B柱的变形模式,提高侧面碰撞安全性能,并满足轻量化要求。 A one dimension hybrid cellular automata(ODHCA) model, which can handle the optimization problem of thickness distribution in different area of the tailor rolled blanks(TRB) B-pillar, was proposed to effectively apply the tailor rolled blank into the lightweight design and the crashworthiness design of the vehicle body. The ODHCA model was established and the TRB B-pillar was divided into several one dimensional cells along the rolling direction; the thicknesses of the cells were extracted as the design variables and the local update rules were determined. The thickness distribution constraint function of the design region was defined. The iterative method and convergence criterion of ODHCA was determined according to the characteristics of flexible rolling process. The results show that the intrusion of the thorax, abdomen, and pelvis is reduced by 8.8%, 13.4%, and 14.6% respectively in the case of equal mass; while the mass is reduced by 14.2%, those of the above body parts is reduced by 5.8%, 9.6%, and 10.3% respectively. Therefore the method can improve the deformation mode of the B-pillar and the side crashworthiness performance, leading to meet the lightweight requirements.
作者 罗欣 段利斌 陈涛 杜展鹏 LUO Xin;DUAN Libin;CHEN Tao;DU Zhangpeng(Hunan University,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha 410082,China;Jiangsu University Automotive and Transportation Engineering School,Zhenjiang 212013,China)
出处 《汽车安全与节能学报》 CAS CSCD 2018年第2期186-193,共8页 Journal of Automotive Safety and Energy
基金 湖南省自然科学基金(2017JJ3030) 广西科技攻关计划(桂攻科1598008-18)
关键词 汽车被动安全 耐撞性 轻量化 连续变厚度轧制(TRB)B柱 一维混合元胞自动机方法(ODHCA) automotive passive safety crashworthiness lightweight tailor rolled blanks (TRB) B-pillar one dimension hybrid cellular automata (ODHCA)
  • 相关文献

参考文献3

二级参考文献57

  • 1唐智亮,刘书田,张宗华.薄壁非凸截面多胞管轴向冲击耐撞性研究[J].固体力学学报,2011,32(S1):206-213. 被引量:9
  • 2游国忠,陈晓东,程勇,朱西产,苏清祖.轿车B柱的优化及对侧面碰撞安全性的影响[J].汽车工程,2006,28(11):972-975. 被引量:37
  • 3Marklund P O, Nilsson L. Optimization of a Car Body Component Subjected to Side Impact [J]. Struct. Multidisciplinary Optimization, 2001,21: 383-392.
  • 4Zhu P, Shi Y L, Zhang K Z, et al. Optimum De- sign of an Automotive Inner Door Panel with a Tai-lor--welded Blank Structure[J]. Journal of Auto- mobile Engineering, 2008,222(8) : 1337-1348.
  • 5Min K B, Kim K S, Kang S S. A Study on Resist- ance Welding in Steel Sheets Using a Tailor--wel- ded Blank (lst report) Evaluation of Upset Weld- ability and Formahility[J]. Journal of Materials Processing Technology, 2000,101 : 186-192.
  • 6Shin J K, Lee K H, Song S I, et al. Automotive Door Design with the ULSAB Concept Using Structural Optimization [J]. Struct. Muhidiscipli- nary Optimization, 2002, 23:320-327.
  • 7Lee K H, Shin J K, Song S I, et al. Automotive Door Design Using Structural Optimization and De- sign of Experiments[J]. Automobile Engineering, 2003, 217(10): 855-865.
  • 8Song S I, Park G J. Multidisciplinary Optimization of an Automotive Door with a Tailored Blank[J]. Automobile Engineering, 2006, 220(2): 151-163.
  • 9Malkusson R, Karlsson P. Simulation Method for Establishing and Satisfylng Side Impact Design Re- quirements[J]. SAE Paper,98ga58.
  • 10Uduma K, Wu J P,Bilkhu S, et ah Door Interior Trim Safety Enhancement Strategies for the SID-- IIs Dummy[J]. SAE Paper,2005010284.

共引文献30

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部