期刊文献+

考虑电池特性的多模型Kalman滤波SOC估计 被引量:5

Multi-model adaptive Kalman filtering SOC estimation considering battery characteristics
下载PDF
导出
摘要 为了准确捕获电池特性以及精确估计荷电状态(SOC),设计了一种多模型自适应Kalman滤波算法估计电池的SOC。该方法通过改进的混合脉冲功率特性(HPPC)试验获取电池的多种特性,建立了两个动态模型分别描述电池的温度特性和倍率特性,并运用基于条件概率的融合算法将电池内部不同的动态特性信息相结合,结果表明:在动态应力测试工况下平均估计误差小于1%,该多模型更好地解释了电池在复杂环境下的非线性特征,使SOC估算在整个充放电区间和较为复杂的使用条件下均保持较高的精度,提高了SOC估计的准确性和鲁棒性。 A multi-model adaptive Kalman filter algorithm was designed to capture battery characteristics and estimate state of charge(SOC) accurately. This method obtained a variety of characteristics of the battery through an improved hybrid pulse power characteristic(HPPC) test, and established two dynamic models to describe the temperature characteristics and the rate characteristics of the battery respectively, and used a fusion algorithm based on conditional probability to combine different dynamic characteristics information within the battery. The results show that the average estimation error is less than 1% under dynamic stress testing conditions. The multi-model filter estimation method integrates the different dynamic characteristics of the battery, which can better explain the nonlinear characteristics of the battery in complex environment, maintaining high accuracy over the entire charge-discharge interval and the more complex usage conditions, also improving the accuracy and robustness of the SOC estimation.
作者 田野 宋凯 TIAN Ye;SONG Kai(Hunan University,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha 410082,China)
出处 《汽车安全与节能学报》 CAS CSCD 2018年第2期223-230,共8页 Journal of Automotive Safety and Energy
基金 国家自然科学基金资助项目(51605155) 国家国际科技合作专项(2016YFE0102200)
关键词 锂离子电池 荷电状态(SOC) 温度特性 倍率特性 多模型 自适应Kalman滤波 lithium-ion battery state of charge (SOC) temperature characteristic rate characteristic multiplemodel adaptive Kalman filter
  • 相关文献

参考文献4

二级参考文献49

  • 1裴锋,黄向东,罗玉涛,赵克刚.电动汽车动力电池变流放电特性与荷电状态实时估计[J].中国电机工程学报,2005,25(9):164-168. 被引量:50
  • 2唐致远,谭才渊,陈玉红,崔燕,薛建军.锂离子电池高倍率放电性能研究[J].电源技术,2006,30(5):383-387. 被引量:19
  • 3王震坡,孟祥峰.电动汽车动力电池成组应用现状及研究趋势[J].新材料产业,2007(8):37-39. 被引量:4
  • 4齐国光,李建民,郏航,徐玉民.电动汽车电量计量技术的研究[J].清华大学学报(自然科学版),1997,37(3):46-49. 被引量:52
  • 5Jossen A,Spath V,Doring H, et al. Reliable batteryoperation-a challenge for the battery managementsystem[J]. Journal of Power Sources,1999,84(2):283-286.
  • 6Plett G L . Extended Kalman filtering for batterymanagement systems of LiPB-based HEV battery packsPart 1 Background[J]. Journal of Power Sources,2004,134(2): 252-261.
  • 7Meissner E, Richter G. The challenge to the automotivebattery industry: the battery has to become an increasinglyintegrated component within the vehicle electric powersystem[J]. Journal of Power Sources, 2005,144(2):438-460.
  • 8NgKS,MooCS,Chen YP, et al. Enhanced coulombcounting method for estimating state-of-charge andstate-of-health of lithium-ion batteries[J] . AppliedEnergy, 2009,86(9): 1506-1511.
  • 9Remmlinger J,Buchholz M,Meiler M,et al.State-of-health monitoring of lithium-ion batteries inelectric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources 2001,196(12): 5357-5363.
  • 10Rosario L,Luk P C K . Applying managementmethodology to electric vehicles with multiple energystorage systems[C]//Proceedings of the Sixth InternationalConference on Machine Learning and Cybernetics. HongKong, IEEE, 2007: 4223 -4230.

共引文献224

同被引文献42

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部