摘要
针对序列图像,提出了增强型无参考质量评价的图像自动选优策略。首先在详细介绍SSEQ、NIQE和BIQI三种经典的无参考图像质量评价方法优缺点的基础上,提出了加权的质量评价策略以对序列图像进行自动选优。其次为了加快权重寻优的过程,提出了基于粒子群优化的PSO-WNRIQA算法。最后为了评估算法的性能,提出失序数比例DNR和失序对数比例DCNR作为算法评价标准。通过对LIVE Release 2图像库中的实验结果表明,在JP2K失真、JPEG失真、高斯模糊失真和快速瑞利衰减失真图像的自动评优过程中,该策略相对SSEQ、NIQE和BIQI具有更优的性能,评价的准确性更高,能够应用于较大规模序列图像的自动质量评价。
This paper proposed an enhanced no-reference quality assessment strategy for sequence images automatic selection.Firstly,on the basis of analyzing the advantages and disadvantages of three classic no-reference quality assessment methods,such as SSEQ,NIQE and BIQI,this paper proposed a weighted quality assessment strategy for sequence images automatic selection. Secondly,it proposed a PSO-WNRIQA algorithm based on particle swarm optimization to speed up the process of weighted selection. Finally,it proposed the disordered number ratio( DNR) and disordered couple number ratio( DCNR) as evaluation criteria to assess the performance of algorithms. The experimental results based on the LIVE Release 2 images database show that the proposed strategy outperforms SSEQ,NIQE and BIQI with higher accuracy for JP2 K,JPEG,Gaussian blur and fast fading distortions images. The proposed strategy is more suitable for large-scale sequence images quality assessment.
作者
陈英
汪文源
朱晓冬
刘元宁
Chen Ying;Wang Wenyuan;Zhu Xiaodong;Liu Yuanning(School of Software,Nanchang Hangkong University,Nanchang 330063,China;School of Computer Science & Technology,Jilin University,Changchun 130012,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第7期2203-2206,共4页
Application Research of Computers
基金
江西省自然科学基金资助项目(20161BAB212034)
南昌航空大学博士启动基金资助项目(EA201520009)
国家自然科学基金资助项目(61662049)
关键词
无参考图像质量评价
序列图像
自动选优
加权评价策略
no reference image quality assessment
sequence images
automatic selection
weighted assessment strategy