期刊文献+

基于增强型无参考质量评价的序列图像自动选优策略 被引量:1

Sequence images automatic selection strategy based on enhanced no-reference quality assessment
下载PDF
导出
摘要 针对序列图像,提出了增强型无参考质量评价的图像自动选优策略。首先在详细介绍SSEQ、NIQE和BIQI三种经典的无参考图像质量评价方法优缺点的基础上,提出了加权的质量评价策略以对序列图像进行自动选优。其次为了加快权重寻优的过程,提出了基于粒子群优化的PSO-WNRIQA算法。最后为了评估算法的性能,提出失序数比例DNR和失序对数比例DCNR作为算法评价标准。通过对LIVE Release 2图像库中的实验结果表明,在JP2K失真、JPEG失真、高斯模糊失真和快速瑞利衰减失真图像的自动评优过程中,该策略相对SSEQ、NIQE和BIQI具有更优的性能,评价的准确性更高,能够应用于较大规模序列图像的自动质量评价。 This paper proposed an enhanced no-reference quality assessment strategy for sequence images automatic selection.Firstly,on the basis of analyzing the advantages and disadvantages of three classic no-reference quality assessment methods,such as SSEQ,NIQE and BIQI,this paper proposed a weighted quality assessment strategy for sequence images automatic selection. Secondly,it proposed a PSO-WNRIQA algorithm based on particle swarm optimization to speed up the process of weighted selection. Finally,it proposed the disordered number ratio( DNR) and disordered couple number ratio( DCNR) as evaluation criteria to assess the performance of algorithms. The experimental results based on the LIVE Release 2 images database show that the proposed strategy outperforms SSEQ,NIQE and BIQI with higher accuracy for JP2 K,JPEG,Gaussian blur and fast fading distortions images. The proposed strategy is more suitable for large-scale sequence images quality assessment.
作者 陈英 汪文源 朱晓冬 刘元宁 Chen Ying;Wang Wenyuan;Zhu Xiaodong;Liu Yuanning(School of Software,Nanchang Hangkong University,Nanchang 330063,China;School of Computer Science & Technology,Jilin University,Changchun 130012,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第7期2203-2206,共4页 Application Research of Computers
基金 江西省自然科学基金资助项目(20161BAB212034) 南昌航空大学博士启动基金资助项目(EA201520009) 国家自然科学基金资助项目(61662049)
关键词 无参考图像质量评价 序列图像 自动选优 加权评价策略 no reference image quality assessment sequence images automatic selection weighted assessment strategy
  • 相关文献

参考文献5

二级参考文献107

  • 1王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 2黄小乔,石俊生,杨健,姚军财.基于色差的均方误差与峰值信噪比评价彩色图像质量研究[J].光子学报,2007,36(B06):295-298. 被引量:24
  • 3张荣,杨建朝,张倩,刘政凯.SAR图像运动模糊参数估计[J].电子学报,2007,35(10):2019-2022. 被引量:5
  • 4Wang Z, Bovik A C, Evans B L, Blind measurement of blocking artifacts in images [ C ]//Proceedings of IEEE International Con- ference on Image Processing. Vancouver, BC: IEEE, 2000, 3: 981-984.
  • 5Liu H, Klomp N, Heynderickx I. A no-reference metric for per- ceived ringing artifacts in images [ J 1. IEEE Transactions on Cir- cuits and Systems for Video Techndogy, 2010, 20(4) : 529-539.
  • 6Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection [ J ]. IEEE Transactions on Image Processing, 2011, 20(9) : 2678-2683.
  • 7Brandao T, Queluz M P. No-reference image quality assessment based on DCT-domain statistics [ J ]. IEEE Signal Processing, 2008, 88(4) : 822-833.
  • 8Sheikh H R, Bovik A C, Cormack L. No-reference quality as- sessment using natural scene statistics : JPEG2000 [ J ] . IEEE Transactions on Image Processing, 2005, 14( 11 ) : 1918-1927.
  • 9Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient [ J ]. EURASIP Journal on Image and Video Processing, 2011, 3 : ( 1-11 ).
  • 10Shen J, Li Q, Erlebacher G. Hybrid no-reference natural image quality assessment of noisy, blurry, JPEG2000, and JPEG ima- ges [ J 1. IEEE Transactions on Image Processing, 2021,20 (9) : 2089 -2098.

共引文献201

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部